{"title":"Landscape-scale predictions of future grassland conversion to cropland or development.","authors":"Kevin W Barnes, Neal D Niemuth, Rich Iovanna","doi":"10.1111/cobi.14346","DOIUrl":null,"url":null,"abstract":"<p><p>Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R<sup>2</sup> = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R<sup>2</sup> = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/cobi.14346","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Grassland conservation planning often focuses on high-risk landscapes, but many grassland conversion models are not designed to optimize conservation planning because they lack multidimensional risk assessments and are misaligned with ecological and conservation delivery scales. To aid grassland conservation planning, we developed landscape-scale models at relevant scales that predict future (2021-2031) total and proportional loss of unprotected grassland to cropland or development. We developed models for 20 ecoregions across the contiguous United States by relating past conversion (2011-2021) to a suite of covariates in random forest regression models and applying the models to contemporary covariates to predict future loss. Overall, grassland loss models performed well, and explanatory power varied spatially across ecoregions (total loss model: weighted group mean R2 = 0.89 [range: 0.83-0.96], root mean squared error [RMSE] = 9.29 ha [range: 2.83-22.77 ha]; proportional loss model: weighted group mean R2 = 0.74 [range: 0.64-0.87], RMSE = 0.03 [range: 0.02-0.06]). Amount of crop in the landscape and distance to cities, ethanol plants, and concentrated animal feeding operations had high variable importance in both models. Total grass loss was greater when there were moderate amounts of grass, crop, or development (∼50%) in the landscape. Proportional grass loss was greater when there was less grass (∼<30%) and more crop or development (∼>50%). Some variables had a large effect on only a subset of ecoregions, for example, grass loss was greater when ∼>70% of the landscape was enrolled in the Conservation Reserve Program. Our methods provide a simple and flexible approach for developing risk layers well suited for conservation that can be extended globally. Our conversion models can support conservation planning by enabling prioritization as a function of risk that can be further optimized by incorporating biological value and cost.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.