Macrophages play a crucial role in vascular smooth muscle cell coverage.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Development Pub Date : 2024-09-15 Epub Date: 2024-09-17 DOI:10.1242/dev.203080
Kenta Niimi, Jun Nakae, Yoshiaki Kubota, Shinobu Inagaki, Tatsuo Furuyama
{"title":"Macrophages play a crucial role in vascular smooth muscle cell coverage.","authors":"Kenta Niimi, Jun Nakae, Yoshiaki Kubota, Shinobu Inagaki, Tatsuo Furuyama","doi":"10.1242/dev.203080","DOIUrl":null,"url":null,"abstract":"<p><p>The microvascular system consists of two cell types: endothelial and mural (pericytes and vascular smooth muscle cells; VSMCs) cells. Communication between endothelial and mural cells plays a pivotal role in the maintenance of vascular homeostasis; however, in vivo molecular and cellular mechanisms underlying mural cell development remain unclear. In this study, we found that macrophages played a crucial role in TGFβ-dependent pericyte-to-VSMC differentiation during retinal vasculature development. In mice with constitutively active Foxo1 overexpression, substantial accumulation of TGFβ1-producing macrophages and pericytes around the angiogenic front region was observed. Additionally, the TGFβ-SMAD pathway was activated in pericytes adjacent to macrophages, resulting in excess ectopic α-smooth muscle actin-positive VSMCs. Furthermore, we identified endothelial SEMA3C as an attractant for macrophages. In vivo neutralization of SEMA3C rescued macrophage accumulation and ectopic VSMC phenotypes in the mice, as well as drug-induced macrophage depletion. Therefore, macrophages play an important physiological role in VSMC development via the FOXO1-SEMA3C pathway.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.203080","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The microvascular system consists of two cell types: endothelial and mural (pericytes and vascular smooth muscle cells; VSMCs) cells. Communication between endothelial and mural cells plays a pivotal role in the maintenance of vascular homeostasis; however, in vivo molecular and cellular mechanisms underlying mural cell development remain unclear. In this study, we found that macrophages played a crucial role in TGFβ-dependent pericyte-to-VSMC differentiation during retinal vasculature development. In mice with constitutively active Foxo1 overexpression, substantial accumulation of TGFβ1-producing macrophages and pericytes around the angiogenic front region was observed. Additionally, the TGFβ-SMAD pathway was activated in pericytes adjacent to macrophages, resulting in excess ectopic α-smooth muscle actin-positive VSMCs. Furthermore, we identified endothelial SEMA3C as an attractant for macrophages. In vivo neutralization of SEMA3C rescued macrophage accumulation and ectopic VSMC phenotypes in the mice, as well as drug-induced macrophage depletion. Therefore, macrophages play an important physiological role in VSMC development via the FOXO1-SEMA3C pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巨噬细胞在覆盖血管平滑肌细胞方面发挥着至关重要的作用。
微血管系统由两种细胞类型组成:内皮细胞和壁细胞(周细胞和血管平滑肌细胞)。内皮细胞和壁细胞之间的交流在维持血管平衡中起着关键作用;然而,壁细胞发育的体内分子和细胞机制仍不清楚。在这项研究中,我们发现巨噬细胞在视网膜血管发育过程中依赖于 TGFβ 的周细胞到 VSMC 的分化过程中起着至关重要的作用。在组成型活性 Foxo1 外显的小鼠中,我们观察到血管生成前沿区域周围大量聚集了产生 TGFβ1 的巨噬细胞和周细胞。此外,在巨噬细胞附近的周细胞中,TGFβ-SMAD 通路被激活,导致过量的异位 α 平滑肌肌动蛋白阳性 VSMC。此外,我们还发现内皮 SEMA3C 是巨噬细胞的吸引物。体内中和 SEMA3C 可挽救小鼠体内的巨噬细胞聚集和异位 VSMC 表型,以及药物诱导的巨噬细胞耗竭。因此,巨噬细胞通过 FOXO1-SEMA3C 通路在 VSMC 发育过程中发挥着重要的生理作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
期刊最新文献
Differential vegfc expression dictates lymphatic response during zebrafish heart development and regeneration. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus. The unique functions of Runx1 in skeletal muscle maintenance and regeneration are facilitated by an ETS interaction domain. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Lgr5+ intestinal stem cells are required for organoid survival after genotoxic injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1