首页 > 最新文献

Development最新文献

英文 中文
Dendritic cells in developing and adult zebrafish arise from different origins and display distinct flt3 dependencies.
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-15 Epub Date: 2025-02-17 DOI: 10.1242/dev.204410
Guanzhen Lin, Youqi Wang, Thi Giang Pham, Zilong Wen

Dendritic cells (DCs) are key cellular components of the immune system and perform crucial functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal-spatial resolved fate-mapping system, here we show that, in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs. The EHP-derived DCs emerge early, predominantly colonizing the developing thymus during larval stages and diminishing by juvenile stages. In contrast, HSC-derived DCs emerge later and can populate different tissues from late larval stages to adulthood. We further document that the EHP- and HSC-derived DCs display different dependencies on Fms-like tyrosine kinase 3 (Flt3), a pivotal receptor tyrosine kinase crucial for DC development in mammals. Our study reveals the presence of two distinct waves of DC development in zebrafish, each with unique origins and developmental controls.

{"title":"Dendritic cells in developing and adult zebrafish arise from different origins and display distinct flt3 dependencies.","authors":"Guanzhen Lin, Youqi Wang, Thi Giang Pham, Zilong Wen","doi":"10.1242/dev.204410","DOIUrl":"10.1242/dev.204410","url":null,"abstract":"<p><p>Dendritic cells (DCs) are key cellular components of the immune system and perform crucial functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal-spatial resolved fate-mapping system, here we show that, in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs. The EHP-derived DCs emerge early, predominantly colonizing the developing thymus during larval stages and diminishing by juvenile stages. In contrast, HSC-derived DCs emerge later and can populate different tissues from late larval stages to adulthood. We further document that the EHP- and HSC-derived DCs display different dependencies on Fms-like tyrosine kinase 3 (Flt3), a pivotal receptor tyrosine kinase crucial for DC development in mammals. Our study reveals the presence of two distinct waves of DC development in zebrafish, each with unique origins and developmental controls.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous function of Antennapedia in adult muscle precursors directly connects Hox genes to adult muscle development.
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-15 Epub Date: 2025-02-17 DOI: 10.1242/dev.204341
Aakriti Singh, Meike van den Burgh, Vigneshwarr Boopathy, Patrick van Nierop Y Sanchez, Josephine Bageritz, Ingrid Lohmann, Katrin Domsch

The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.

{"title":"Autonomous function of Antennapedia in adult muscle precursors directly connects Hox genes to adult muscle development.","authors":"Aakriti Singh, Meike van den Burgh, Vigneshwarr Boopathy, Patrick van Nierop Y Sanchez, Josephine Bageritz, Ingrid Lohmann, Katrin Domsch","doi":"10.1242/dev.204341","DOIUrl":"10.1242/dev.204341","url":null,"abstract":"<p><p>The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic map illuminates Hippo-cMyc module crosstalk driving cardiomyocyte proliferation.
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-15 Epub Date: 2025-02-17 DOI: 10.1242/dev.204397
Bryana N Harris, Laura A Woo, R Noah Perry, Alexia M Wallace, Mete Civelek, Matthew J Wolf, Jeffrey J Saucerman

Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 74 of 81 (91.35%) independent experiments from the literature. The model predicts that in response to YAP activation, the Hippo module crosstalks to the growth factor module via PI3K and cMyc to drive cell cycle activity. This predicted YAP-cMyc axis is validated experimentally in rat CMs and further supported by YAP-stimulated cMyc open chromatin and mRNA in mouse hearts. This validated computational model predicts how individual regulators and modules coordinate to control CM proliferation.

{"title":"Dynamic map illuminates Hippo-cMyc module crosstalk driving cardiomyocyte proliferation.","authors":"Bryana N Harris, Laura A Woo, R Noah Perry, Alexia M Wallace, Mete Civelek, Matthew J Wolf, Jeffrey J Saucerman","doi":"10.1242/dev.204397","DOIUrl":"10.1242/dev.204397","url":null,"abstract":"<p><p>Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 74 of 81 (91.35%) independent experiments from the literature. The model predicts that in response to YAP activation, the Hippo module crosstalks to the growth factor module via PI3K and cMyc to drive cell cycle activity. This predicted YAP-cMyc axis is validated experimentally in rat CMs and further supported by YAP-stimulated cMyc open chromatin and mRNA in mouse hearts. This validated computational model predicts how individual regulators and modules coordinate to control CM proliferation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program. 心脏转录增强子在再生过程中被重新利用以激活抗增殖程序。
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-15 Epub Date: 2025-02-17 DOI: 10.1242/dev.204458
Anupama Rao, Andrew Russell, Jose Segura-Bermudez, Charles Franz, Rejenae Dockery, Anton Blatnik, Jacob Panten, Mateo Zevallos, Carson McNulty, Maciej Pietrzak, Joseph Aaron Goldman

Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.

斑马鱼的心脏再生能力很强。一些研究调查了转录增强子,以了解心脏再生过程中基因表达是如何被控制的。我们发现 REN 或 runx1 增强子在再生过程中调控附近 runx1 基因的表达。我们发现,只有在再生过程中,REN(ΔREN)缺失时runx1 mRNA才会减少,ΔREN突变体的心肌细胞增殖才会增强。有趣的是,在未损伤的心脏中,ΔREN 突变体附近编码胶原蛋白酶的基因 adamts1 表达减少。这导致未损伤心脏的心瓣膜内胶原蛋白过多。ΔREN胶原蛋白表型可被Δrunx1突变的等位基因拯救,这表明在未损伤的心脏中,REN对adamts1的调控独立于runx1。综上所述,这表明在未损伤的心脏中,REN与adamts1重新连接,在再生过程中刺激runx1转录。我们的数据表明,斑马鱼心脏再生过程中的基因调控机制以前未被重视。我们报告了一个增强子从远端心脏结构域的表达中重新连接,以激活再生组织中的一个不同基因。
{"title":"A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program.","authors":"Anupama Rao, Andrew Russell, Jose Segura-Bermudez, Charles Franz, Rejenae Dockery, Anton Blatnik, Jacob Panten, Mateo Zevallos, Carson McNulty, Maciej Pietrzak, Joseph Aaron Goldman","doi":"10.1242/dev.204458","DOIUrl":"10.1242/dev.204458","url":null,"abstract":"<p><p>Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POU4F2/BRN3B overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors.
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-13 DOI: 10.1242/dev.204297
Viviane Medeiros Oliveira-Valença, Jacqueline Mary Roberts, Vitória Melo Fernandes-Cerqueira, Carolina Herkenhoff Colmerauer, Beatriz Cardoso de Toledo, Pedro Lucas Santos-França, Rafael Linden, Rodrigo Alves Portela Martins, Maurício Rocha-Martins, Alejandra Bosco, Monica Lynn Vetter, Mariana Souza da Silveira

Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development which include Atoh7 as a major orchestrator for RGC program and downstream targets, including Pou4f factors, which in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and ultimately RGC death, confirming the requirement of POU4F factors for RGC development and survival, with a critical role in regulating RGC axon outgrowth and pathfinding. Here, we investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long range axon projections. We showed that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs normally generated during early development and extend axonal projections up to the brain. In conclusion, these results showed that POU4F2 alone was sufficient to promote critical properties of projection neurons from retinal progenitors outside their developmental window.

{"title":"POU4F2/BRN3B overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors.","authors":"Viviane Medeiros Oliveira-Valença, Jacqueline Mary Roberts, Vitória Melo Fernandes-Cerqueira, Carolina Herkenhoff Colmerauer, Beatriz Cardoso de Toledo, Pedro Lucas Santos-França, Rafael Linden, Rodrigo Alves Portela Martins, Maurício Rocha-Martins, Alejandra Bosco, Monica Lynn Vetter, Mariana Souza da Silveira","doi":"10.1242/dev.204297","DOIUrl":"https://doi.org/10.1242/dev.204297","url":null,"abstract":"<p><p>Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development which include Atoh7 as a major orchestrator for RGC program and downstream targets, including Pou4f factors, which in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and ultimately RGC death, confirming the requirement of POU4F factors for RGC development and survival, with a critical role in regulating RGC axon outgrowth and pathfinding. Here, we investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long range axon projections. We showed that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs normally generated during early development and extend axonal projections up to the brain. In conclusion, these results showed that POU4F2 alone was sufficient to promote critical properties of projection neurons from retinal progenitors outside their developmental window.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modal refinement of the human heart atlas during the first gestational trimester.
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-10 DOI: 10.1242/dev.204555
Christopher De Bono, Yichi Xu, Samina Kausar, Marine Herbane, Camille Humbert, Sevda Rafatov, Chantal Missirian, Mathias Moreno, Weiyang Shi, Yorick Gitton, Alberto Lombardini, Ivo Vanzetta, Séverine Mazaud-Guittot, Alain Chédotal, Anaïs Baudot, Stéphane Zaffran, Heather C Etchevers

Forty first-trimester human hearts were studied to lay groundwork for further studies of principles underlying congenital heart defects. We first sampled 49,227 cardiac nuclei from three fetuses at 8.6, 9.0, and 10.7 post-conceptional weeks (pcw) for single-nucleus RNA sequencing, enabling distinction of six classes comprising 21 cell types. Improved resolution led to identification of novel cardiomyocytes and minority autonomic and lymphatic endothelial transcriptomes, among others. After integration with 5-7 pcw heart single-cell RNAseq, we identified a human cardiomyofibroblast progenitor preceding diversification of cardiomyocyte and stromal lineages. Analysis of six Visium sections from two additional hearts was aided by deconvolution, and key spatial markers validated on sectioned and whole hearts in two- and three-dimensional space and over time. Altogether, anatomical-positional features including innervation, conduction and subdomains of the atrioventricular septum translate latent molecular identity into specialized cardiac functions. This atlas adds unprecedented spatial and temporal resolution to the characterization of human-specific aspects of early heart formation.

{"title":"Multi-modal refinement of the human heart atlas during the first gestational trimester.","authors":"Christopher De Bono, Yichi Xu, Samina Kausar, Marine Herbane, Camille Humbert, Sevda Rafatov, Chantal Missirian, Mathias Moreno, Weiyang Shi, Yorick Gitton, Alberto Lombardini, Ivo Vanzetta, Séverine Mazaud-Guittot, Alain Chédotal, Anaïs Baudot, Stéphane Zaffran, Heather C Etchevers","doi":"10.1242/dev.204555","DOIUrl":"https://doi.org/10.1242/dev.204555","url":null,"abstract":"<p><p>Forty first-trimester human hearts were studied to lay groundwork for further studies of principles underlying congenital heart defects. We first sampled 49,227 cardiac nuclei from three fetuses at 8.6, 9.0, and 10.7 post-conceptional weeks (pcw) for single-nucleus RNA sequencing, enabling distinction of six classes comprising 21 cell types. Improved resolution led to identification of novel cardiomyocytes and minority autonomic and lymphatic endothelial transcriptomes, among others. After integration with 5-7 pcw heart single-cell RNAseq, we identified a human cardiomyofibroblast progenitor preceding diversification of cardiomyocyte and stromal lineages. Analysis of six Visium sections from two additional hearts was aided by deconvolution, and key spatial markers validated on sectioned and whole hearts in two- and three-dimensional space and over time. Altogether, anatomical-positional features including innervation, conduction and subdomains of the atrioventricular septum translate latent molecular identity into specialized cardiac functions. This atlas adds unprecedented spatial and temporal resolution to the characterization of human-specific aspects of early heart formation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single cell-derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in Ceratopteris. 单细胞衍生的多细胞分生组织:角翅目雄性向雌雄同体转化和新生分生组织形成的见解。
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-13 DOI: 10.1242/dev.204411
Xi Yang, An Yan, Xing Liu, Alexandria Volkening, Yun Zhou

Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems. In the absence of the pheromone antheridiogen, males convert to hermaphrodites by forming de novo meristems, although the mechanisms remain unclear. Using long-term time-lapse imaging and computational analyses, we captured male-to-hermaphrodite conversion at single-cell resolution and reconstructed the lineage and division atlas of newly formed meristems. Lineage tracing revealed that the de novo-formed meristem originates from a single non-antheridium cell: the meristem progenitor cell (MPC). During conversion, the MPC lineage showed increased mitotic activity, with marginal cells proliferating faster than inner cells. A mathematical model suggested that stochastic variation in cell division, combined with strong inhibitory signals from dividing marginal cells, is sufficient to explain gametophyte dynamics. Experimental disruption of division timing agreed with the model, showing that precise cell cycle progression is essential for MPC establishment and sex-type conversion. These findings reveal cellular mechanisms governing sex conversion and de novo meristem formation in land plants.

陆地植物在无性孢子体和有性配子体之间交替生长。与种子植物不同,蕨类植物的配子体是自由生长的。模式蕨类角蕨的配子体表现出两种性别类型:具有多能分生组织的雌雄同体和缺乏分生组织的雄性。在缺乏信息素的情况下,雄性通过形成新生分生组织转变为雌雄同体,尽管机制尚不清楚。利用长期延时成像和计算分析,我们在单细胞分辨率下捕获了雄性到雌雄同体的转化,并重建了新形成的分生组织的谱系和分裂图谱。谱系追踪显示,新生形成的分生系统起源于单一的非腺细胞,分生系统祖细胞(MPC)。在转化过程中,MPC谱系显示有丝分裂活性增加,边缘细胞比内部细胞增殖更快。一个数学模型表明,细胞分裂的随机变化,结合边缘细胞分裂产生的强烈抑制信号,足以解释配子体动力学。分裂时间的实验中断与模型一致,表明精确的细胞周期进程对于MPC的建立和性别类型转换至关重要。这些发现揭示了陆地植物性别转化和新生分生组织形成的细胞机制。
{"title":"Single cell-derived multicellular meristem: insights into male-to-hermaphrodite conversion and de novo meristem formation in Ceratopteris.","authors":"Xi Yang, An Yan, Xing Liu, Alexandria Volkening, Yun Zhou","doi":"10.1242/dev.204411","DOIUrl":"10.1242/dev.204411","url":null,"abstract":"<p><p>Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems. In the absence of the pheromone antheridiogen, males convert to hermaphrodites by forming de novo meristems, although the mechanisms remain unclear. Using long-term time-lapse imaging and computational analyses, we captured male-to-hermaphrodite conversion at single-cell resolution and reconstructed the lineage and division atlas of newly formed meristems. Lineage tracing revealed that the de novo-formed meristem originates from a single non-antheridium cell: the meristem progenitor cell (MPC). During conversion, the MPC lineage showed increased mitotic activity, with marginal cells proliferating faster than inner cells. A mathematical model suggested that stochastic variation in cell division, combined with strong inhibitory signals from dividing marginal cells, is sufficient to explain gametophyte dynamics. Experimental disruption of division timing agreed with the model, showing that precise cell cycle progression is essential for MPC establishment and sex-type conversion. These findings reveal cellular mechanisms governing sex conversion and de novo meristem formation in land plants.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transitions in development - an interview with Aleksandra Pękowska.
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-05 DOI: 10.1242/dev.204603

Aleksandra Pękowska leads the Dioscuri Center for Chromatin Biology and Epigenomics at the Nencki Institute of Experimental Biology of the Polish Academy of Sciences in Warsaw, Poland, where she studies the role of astrocytes in brain development. Her research connects astrocyte chromatin architecture to broader questions about how these glial cells have influenced human brain evolution. We met Aleksandra over Zoom to discuss her career path so far. She told us about how she came to work on nervous system development, the interdisciplinary nature of her research group, and how she almost ended up studying law at university.

{"title":"Transitions in development - an interview with Aleksandra Pękowska.","authors":"","doi":"10.1242/dev.204603","DOIUrl":"https://doi.org/10.1242/dev.204603","url":null,"abstract":"<p><p>Aleksandra Pękowska leads the Dioscuri Center for Chromatin Biology and Epigenomics at the Nencki Institute of Experimental Biology of the Polish Academy of Sciences in Warsaw, Poland, where she studies the role of astrocytes in brain development. Her research connects astrocyte chromatin architecture to broader questions about how these glial cells have influenced human brain evolution. We met Aleksandra over Zoom to discuss her career path so far. She told us about how she came to work on nervous system development, the interdisciplinary nature of her research group, and how she almost ended up studying law at university.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"152 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserved roles of ETT and ARF4 in gynoecium development in Brassicaceae with distinct fruit shapes. ETT和ARF4在具有不同果实形状的十字花科植物雌蕊群发育过程中的作用是一致的。
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-12 DOI: 10.1242/dev.204263
Heather Marie McLaughlin, Tian-Feng Lü, Bhavani Natarajan, Lars Østergaard, Yang Dong

Gynoecium patterning is dependent on the dynamic distribution of auxin, the signalling of which is transduced through several distinct pathways. ETTIN (ETT)-mediated signalling occurs independently of the canonical auxin pathway, and ETT shares partial redundancy with Auxin Response Factor 4 (ARF4) in the gynoecium. ETT and ARF4 were previously hypothesized to translate auxin gradients into patterns of tissue polarity alongside other ARFs. As ARF repressors, ETT/ARF were assumed to antagonistically regulate targets shared with ARF activators of the canonical pathway. Here, comparative transcriptomics identified the distinct and overlapping targets of ETT/ARF4 in the Arabidopsis gynoecium. However, ETT/ARF4 targets with known roles in gynoecium development did not conform to models of A-B ARF antagonism, leaving the relationship with the canonical pathway unclear. Mutants in tir1 afb2 ett were therefore generated in Arabidopsis and Capsella to assess the relationship between the two pathways, and their conservation in species with distinct fruit shapes. The data presented indicate conserved synergism between the two pathways in gynoecium development and suggest a role for ARF4 in the integration of these pathways in Brassicaceae with distinct fruit shapes.

{"title":"Conserved roles of ETT and ARF4 in gynoecium development in Brassicaceae with distinct fruit shapes.","authors":"Heather Marie McLaughlin, Tian-Feng Lü, Bhavani Natarajan, Lars Østergaard, Yang Dong","doi":"10.1242/dev.204263","DOIUrl":"https://doi.org/10.1242/dev.204263","url":null,"abstract":"<p><p>Gynoecium patterning is dependent on the dynamic distribution of auxin, the signalling of which is transduced through several distinct pathways. ETTIN (ETT)-mediated signalling occurs independently of the canonical auxin pathway, and ETT shares partial redundancy with Auxin Response Factor 4 (ARF4) in the gynoecium. ETT and ARF4 were previously hypothesized to translate auxin gradients into patterns of tissue polarity alongside other ARFs. As ARF repressors, ETT/ARF were assumed to antagonistically regulate targets shared with ARF activators of the canonical pathway. Here, comparative transcriptomics identified the distinct and overlapping targets of ETT/ARF4 in the Arabidopsis gynoecium. However, ETT/ARF4 targets with known roles in gynoecium development did not conform to models of A-B ARF antagonism, leaving the relationship with the canonical pathway unclear. Mutants in tir1 afb2 ett were therefore generated in Arabidopsis and Capsella to assess the relationship between the two pathways, and their conservation in species with distinct fruit shapes. The data presented indicate conserved synergism between the two pathways in gynoecium development and suggest a role for ARF4 in the integration of these pathways in Brassicaceae with distinct fruit shapes.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"152 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis. 急性炎症诱导急性巨核生成,胎儿造血过程中血小板生成受损。
IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-02-05 DOI: 10.1242/dev.204226
Xiaojie Hu, Yirui He, Shengwei Li, Yue Jiang, Renjie Yu, Yi Wu, Xiaoying Fu, Yuanbin Song, Changdong Lin, Jiejun Shi, Hua-Bing Li, Yimeng Gao

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis in mouse. This dsRNA-mediated inflammation leads to acute megakaryopoiesis, which facilitates the generation of megakaryocyte progenitors but disrupts megakaryocyte maturation and platelet production. The inflammation and immune response activate the phosphorylation of STAT1 and IRF3, and upregulate downstream interferon-stimulated genes (ISGs). Inflammation inhibits the proliferation rate of hematopoietic progenitors and further skews the cell fate determination toward megakaryocytes rather than toward erythroid from megakaryocyte-erythroid progenitors (MEPs). Transcriptional-wide gene expression analysis identifies IGF1 as a major factor whose reduction is responsible for the inhibition of megakaryopoiesis and thrombopoiesis. Restoration of IGF1 with METTL3-deficient hematopoietic cells significantly increases megakaryocyte maturation. In summary, we elucidate that the loss of RNA m6A modification-induced acute inflammation activates acute megakaryopoiesis, but impairs its final maturation through the inhibition of IGF1 expression during fetal hematopoiesis.

造血发育受多种因素的密切调控。RNA m6A修饰在胎儿造血过程中的作用,特别是在巨核生成过程中,仍不清楚。在这里,我们证明了m6A甲基转移酶METTL3的缺失诱导双链rna (dsRNAs)的形成并激活胎儿造血过程中的急性炎症。这种dsrna介导的炎症导致急性巨核生成,这促进了巨核细胞祖细胞(MkP)的产生,但破坏了巨核细胞的成熟和血小板的产生。炎症和免疫反应激活STAT1和IRF3的磷酸化,上调下游干扰素刺激基因(ISGs)。炎症抑制了造血祖细胞的增殖率,并进一步使巨核细胞-红祖细胞(MEPs)的细胞命运倾向于巨核细胞而不是红细胞。转录全基因表达分析确定IGF1是抑制巨核生成和血小板生成的主要因子。mettl3缺陷造血细胞修复IGF1显著增加巨核细胞成熟。总之,我们阐明了RNA m6A修饰诱导的急性炎症的缺失激活了急性巨核生成,但通过抑制胎儿造血过程中IGF1的表达,损害了其最终的成熟。
{"title":"Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.","authors":"Xiaojie Hu, Yirui He, Shengwei Li, Yue Jiang, Renjie Yu, Yi Wu, Xiaoying Fu, Yuanbin Song, Changdong Lin, Jiejun Shi, Hua-Bing Li, Yimeng Gao","doi":"10.1242/dev.204226","DOIUrl":"10.1242/dev.204226","url":null,"abstract":"<p><p>Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis in mouse. This dsRNA-mediated inflammation leads to acute megakaryopoiesis, which facilitates the generation of megakaryocyte progenitors but disrupts megakaryocyte maturation and platelet production. The inflammation and immune response activate the phosphorylation of STAT1 and IRF3, and upregulate downstream interferon-stimulated genes (ISGs). Inflammation inhibits the proliferation rate of hematopoietic progenitors and further skews the cell fate determination toward megakaryocytes rather than toward erythroid from megakaryocyte-erythroid progenitors (MEPs). Transcriptional-wide gene expression analysis identifies IGF1 as a major factor whose reduction is responsible for the inhibition of megakaryopoiesis and thrombopoiesis. Restoration of IGF1 with METTL3-deficient hematopoietic cells significantly increases megakaryocyte maturation. In summary, we elucidate that the loss of RNA m6A modification-induced acute inflammation activates acute megakaryopoiesis, but impairs its final maturation through the inhibition of IGF1 expression during fetal hematopoiesis.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1