Andrea Arrones, Silvia Manrique, Joaquin Gomis-Cebolla, Virginia Baraja-Fonseca, Mariola Plazas, Jaime Prohens, Ezio Portis, Lorenzo Barchi, Giovanni Giuliano, Pietro Gramazio, Santiago Vilanova
{"title":"Irregular green netting of eggplant fruit peel: a domestication trait controlled by SmGLK2 with potential for fruit colour diversification.","authors":"Andrea Arrones, Silvia Manrique, Joaquin Gomis-Cebolla, Virginia Baraja-Fonseca, Mariola Plazas, Jaime Prohens, Ezio Portis, Lorenzo Barchi, Giovanni Giuliano, Pietro Gramazio, Santiago Vilanova","doi":"10.1093/jxb/erae355","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of chlorophylls in eggplant (Solanum melongena) peel exhibits either a uniform pattern or an irregular green netting pattern. The latter, manifested as a gradient of dark green netting that is intensified in the proximal part of the fruit on a pale green background, is common in wild relatives and some eggplant landraces. Despite the selection of uniform chlorophylls during domestication, the netting pattern contributes to a greater diversity of fruit colours. Here, we used over 2300 individuals from different populations, including a multi-parent advanced generation inter-cross population for candidate genomic region identification, an F2 population for bulked segregant analysis by sequencing, and advanced backcrosses for edges-to-core fine-mapping, to identify SmGLK2 gene as responsible for the irregular netting in eggplant fruits. We also analysed the gene sequence of 178 S. melongena accessions and 22 wild relative species for tracing the evolutionary changes that the gene has undergone during domestication. Three different mutations were identified leading to the absence of netting. The main causative indel induces a premature stop codon disrupting the protein conformation and function, which was confirmed by western blot analysis and confocal microscopy observations. SmGLK2 has a major role in regulating chlorophyll biosynthesis in eggplant fruit peel.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"7066-7078"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630072/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae355","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution of chlorophylls in eggplant (Solanum melongena) peel exhibits either a uniform pattern or an irregular green netting pattern. The latter, manifested as a gradient of dark green netting that is intensified in the proximal part of the fruit on a pale green background, is common in wild relatives and some eggplant landraces. Despite the selection of uniform chlorophylls during domestication, the netting pattern contributes to a greater diversity of fruit colours. Here, we used over 2300 individuals from different populations, including a multi-parent advanced generation inter-cross population for candidate genomic region identification, an F2 population for bulked segregant analysis by sequencing, and advanced backcrosses for edges-to-core fine-mapping, to identify SmGLK2 gene as responsible for the irregular netting in eggplant fruits. We also analysed the gene sequence of 178 S. melongena accessions and 22 wild relative species for tracing the evolutionary changes that the gene has undergone during domestication. Three different mutations were identified leading to the absence of netting. The main causative indel induces a premature stop codon disrupting the protein conformation and function, which was confirmed by western blot analysis and confocal microscopy observations. SmGLK2 has a major role in regulating chlorophyll biosynthesis in eggplant fruit peel.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.