Diffusion distribution model for damage mitigation in scanning transmission electron microscopy

IF 1.5 4区 工程技术 Q3 MICROSCOPY Journal of microscopy Pub Date : 2024-08-21 DOI:10.1111/jmi.13351
Amirafshar Moshtaghpour, Abner Velazco-Torrejon, Daniel Nicholls, Alex W. Robinson, Angus I. Kirkland, Nigel D. Browning
{"title":"Diffusion distribution model for damage mitigation in scanning transmission electron microscopy","authors":"Amirafshar Moshtaghpour,&nbsp;Abner Velazco-Torrejon,&nbsp;Daniel Nicholls,&nbsp;Alex W. Robinson,&nbsp;Angus I. Kirkland,&nbsp;Nigel D. Browning","doi":"10.1111/jmi.13351","DOIUrl":null,"url":null,"abstract":"<p>Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"57-77"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13351","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于减轻扫描透射电子显微镜损伤的扩散分布模型。
尽管扫描透射电子显微镜(STEM)被广泛用于观察原子尺度的材料结构,但人们对一些相关电子束损伤机制的详细了解仍然有限。最近的报告表明,某些类型的损伤可以被模拟为扩散过程,为了减少损伤,必须将这一过程的累积效应保持在较低水平。因此,我们对 STEM 中的时空扩散过程进行了明确的数学表述,并将仪器和样品参数都考虑在内。此外,我们的框架还可以帮助设计扩散控制采样(DCS)策略,利用 STEM 中优化选择的探针位置来限制累积扩散分布。数值模拟凸显了不同 STEM 实验配置下累积扩散分布的可变性。这些分析和数值框架随后可用于精心设计 2 维和 4 维 STEM 实验,从而最大限度地减少光束损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
期刊最新文献
Towards affordable biomedical imaging: Recent advances in low-cost, high-resolution optoacoustic microscopy. TOC - Issue Information A comparison of super-resolution microscopy techniques for imaging tightly packed microcolonies of an obligate intracellular bacterium. Mechanical properties of bone cells studied by atomic force microscopy. Multicamera simultaneous total internal reflection and interference reflection microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1