{"title":"Effects of Dietary Oxidized Phytosterol on Lipid Metabolism in Rats.","authors":"Tomonari Koyama, Daichi Fukuoka, Kyoichi Osada","doi":"10.5650/jos.ess24064","DOIUrl":null,"url":null,"abstract":"<p><p>Many in vitro studies have revealed the toxic effects of oxidized phytosterols (OPSs); however, their effects on lipid metabolism are not well understood in vivo. Therefore, we examined the bioavailability of OPS and compared the effects of dietary phytosterols (PSs) or OPS on lipid metabolism in rats. OPS was detected in the plasma and liver of rats administered 50 mg of OPS for 3 days. Rats were fed the AIN76 diet (C group), basal diet plus 0.25% PS (P group), or 0.25% OPS (O group) for 4 weeks. Dietary OPS but not PS reduced hepatic fatty acid synthase activity. Liver triacylglycerol (TG) levels tended to be lower in the P group than in the C group and were significantly lower in the O group. The mRNA expression level of HMG-CoA reductase in the liver was the lowest in the O group, whereas that of CYP27A1 was the highest in the O group. The mRNA expression levels of NPC1L1 in the intestinal mucosa were significantly lower in the P and O groups than in the C group. Consistent with these modulations, plasma total cholesterol (TC) and HDL-C levels were similar between the C and P groups but tended to be higher or significantly higher in the O group. Liver TC levels were significantly lower in the P and O groups than in the C group. Moreover, fecal neutral and acidic steroid levels were the highest in the O group. The mRNA expression level of Δ6 desaturase in the liver was significantly higher in both the P and the O groups than in the C group. The Δ6 desaturation indices of fatty acids in the total liver lipids were the highest in the O group. Thus, dietary OPS may modulate lipid metabolism in the liver.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess24064","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Many in vitro studies have revealed the toxic effects of oxidized phytosterols (OPSs); however, their effects on lipid metabolism are not well understood in vivo. Therefore, we examined the bioavailability of OPS and compared the effects of dietary phytosterols (PSs) or OPS on lipid metabolism in rats. OPS was detected in the plasma and liver of rats administered 50 mg of OPS for 3 days. Rats were fed the AIN76 diet (C group), basal diet plus 0.25% PS (P group), or 0.25% OPS (O group) for 4 weeks. Dietary OPS but not PS reduced hepatic fatty acid synthase activity. Liver triacylglycerol (TG) levels tended to be lower in the P group than in the C group and were significantly lower in the O group. The mRNA expression level of HMG-CoA reductase in the liver was the lowest in the O group, whereas that of CYP27A1 was the highest in the O group. The mRNA expression levels of NPC1L1 in the intestinal mucosa were significantly lower in the P and O groups than in the C group. Consistent with these modulations, plasma total cholesterol (TC) and HDL-C levels were similar between the C and P groups but tended to be higher or significantly higher in the O group. Liver TC levels were significantly lower in the P and O groups than in the C group. Moreover, fecal neutral and acidic steroid levels were the highest in the O group. The mRNA expression level of Δ6 desaturase in the liver was significantly higher in both the P and the O groups than in the C group. The Δ6 desaturation indices of fatty acids in the total liver lipids were the highest in the O group. Thus, dietary OPS may modulate lipid metabolism in the liver.
期刊介绍:
The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils
such as related food products, detergents, natural products,
petroleum products, lipids and related proteins and sugars.
The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/
sensory/nutritional/toxicological evaluation related to agriculture and/or food.