Non-linear relationships in clinical research.

IF 4.8 2区 医学 Q1 TRANSPLANTATION Nephrology Dialysis Transplantation Pub Date : 2024-08-21 DOI:10.1093/ndt/gfae187
Nicholas C Chesnaye, Merel van Diepen, Friedo Dekker, Carmine Zoccali, Kitty J Jager, Vianda S Stel
{"title":"Non-linear relationships in clinical research.","authors":"Nicholas C Chesnaye, Merel van Diepen, Friedo Dekker, Carmine Zoccali, Kitty J Jager, Vianda S Stel","doi":"10.1093/ndt/gfae187","DOIUrl":null,"url":null,"abstract":"<p><p>True linear relationships are rare in clinical data. Despite this, linearity is often assumed during analyses, leading to potentially biased estimates and inaccurate conclusions. In this introductory paper, we aim to first describe - in a non-mathematical manner - how to identify non-linear relationships. Various methods are then discussed that can be applied to deal with non-linearity, including transformations, polynomials, splines, and Generalized Additive Models (GAMs), along with their strengths and weaknesses. Finally, we illustrate the use of these methods with a practical example from nephrology, providing guidance on how to report the results from non-linear relationships.</p>","PeriodicalId":19078,"journal":{"name":"Nephrology Dialysis Transplantation","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephrology Dialysis Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ndt/gfae187","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPLANTATION","Score":null,"Total":0}
引用次数: 0

Abstract

True linear relationships are rare in clinical data. Despite this, linearity is often assumed during analyses, leading to potentially biased estimates and inaccurate conclusions. In this introductory paper, we aim to first describe - in a non-mathematical manner - how to identify non-linear relationships. Various methods are then discussed that can be applied to deal with non-linearity, including transformations, polynomials, splines, and Generalized Additive Models (GAMs), along with their strengths and weaknesses. Finally, we illustrate the use of these methods with a practical example from nephrology, providing guidance on how to report the results from non-linear relationships.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床研究中的非线性关系。
真正的线性关系在临床数据中很少见。尽管如此,在分析过程中仍经常假定存在线性关系,从而导致可能有偏差的估计和不准确的结论。在这篇介绍性论文中,我们旨在首先以非数学方式描述如何识别非线性关系。然后讨论可用于处理非线性关系的各种方法,包括变换、多项式、样条曲线和广义加法模型 (GAM),以及它们的优缺点。最后,我们以肾脏病学中的一个实际例子来说明这些方法的使用,为如何报告非线性关系的结果提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nephrology Dialysis Transplantation
Nephrology Dialysis Transplantation 医学-泌尿学与肾脏学
CiteScore
10.10
自引率
4.90%
发文量
1431
审稿时长
1.7 months
期刊介绍: Nephrology Dialysis Transplantation (ndt) is the leading nephrology journal in Europe and renowned worldwide, devoted to original clinical and laboratory research in nephrology, dialysis and transplantation. ndt is an official journal of the [ERA-EDTA](http://www.era-edta.org/) (European Renal Association-European Dialysis and Transplant Association). Published monthly, the journal provides an essential resource for researchers and clinicians throughout the world. All research articles in this journal have undergone peer review. Print ISSN: 0931-0509.
期刊最新文献
How complement inhibitors are transforming the management of complement-mediated disorders. Noncanonical microglial IL-1β maturation in chronic kidney disease. Oxygen sensing in the kidney. Cold atmospheric plasma for chronic kidney disease-related skin disorders. Sex differences in cancer outcomes across the range of eGFR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1