The microbiota-dependent tryptophan metabolite alleviates high-fat diet-induced insulin resistance through the hepatic AhR/TSC2/mTORC1 axis.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-08-27 Epub Date: 2024-08-21 DOI:10.1073/pnas.2400385121
Wei Du, Shanshan Jiang, Shengxiang Yin, Rongjiang Wang, Chunling Zhang, Bin-Cheng Yin, Jialin Li, Li Li, Nan Qi, Ying Zhou, Bang-Ce Ye
{"title":"The microbiota-dependent tryptophan metabolite alleviates high-fat diet-induced insulin resistance through the hepatic AhR/TSC2/mTORC1 axis.","authors":"Wei Du, Shanshan Jiang, Shengxiang Yin, Rongjiang Wang, Chunling Zhang, Bin-Cheng Yin, Jialin Li, Li Li, Nan Qi, Ying Zhou, Bang-Ce Ye","doi":"10.1073/pnas.2400385121","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is potentially linked to disordered tryptophan metabolism that attributes to the intricate interplay among diet, gut microbiota, and host physiology. However, underlying mechanisms are substantially unknown. Comparing the gut microbiome and metabolome differences in mice fed a normal diet (ND) and high-fat diet (HFD), we uncover that the gut microbiota-dependent tryptophan metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) is present at lower concentrations in mice with versus without insulin resistance. We further demonstrate that the microbial transformation of tryptophan into 5-HIAA is mediated by <i>Burkholderia</i> spp. Additionally, we show that the administration of 5-HIAA improves glucose intolerance and obesity in HFD-fed mice, while preserving hepatic insulin sensitivity. Mechanistically, 5-HIAA promotes hepatic insulin signaling by directly activating AhR, which stimulates TSC2 transcription and thus inhibits mTORC1 signaling. Moreover, T2D patients exhibit decreased fecal levels of 5-HIAA. Our findings identify a noncanonical pathway of microbially producing 5-HIAA from tryptophan and indicate that 5-HIAA might alleviate the pathogenesis of T2D.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2400385121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes (T2D) is potentially linked to disordered tryptophan metabolism that attributes to the intricate interplay among diet, gut microbiota, and host physiology. However, underlying mechanisms are substantially unknown. Comparing the gut microbiome and metabolome differences in mice fed a normal diet (ND) and high-fat diet (HFD), we uncover that the gut microbiota-dependent tryptophan metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) is present at lower concentrations in mice with versus without insulin resistance. We further demonstrate that the microbial transformation of tryptophan into 5-HIAA is mediated by Burkholderia spp. Additionally, we show that the administration of 5-HIAA improves glucose intolerance and obesity in HFD-fed mice, while preserving hepatic insulin sensitivity. Mechanistically, 5-HIAA promotes hepatic insulin signaling by directly activating AhR, which stimulates TSC2 transcription and thus inhibits mTORC1 signaling. Moreover, T2D patients exhibit decreased fecal levels of 5-HIAA. Our findings identify a noncanonical pathway of microbially producing 5-HIAA from tryptophan and indicate that 5-HIAA might alleviate the pathogenesis of T2D.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
依赖微生物群的色氨酸代谢物可通过肝脏 AhR/TSC2/mTORC1 轴缓解高脂饮食诱导的胰岛素抵抗。
2 型糖尿病(T2D)可能与色氨酸代谢紊乱有关,而色氨酸代谢紊乱归因于饮食、肠道微生物群和宿主生理之间错综复杂的相互作用。然而,其潜在机制尚不清楚。通过比较正常饮食(ND)和高脂饮食(HFD)小鼠的肠道微生物组和代谢组差异,我们发现,依赖于肠道微生物组的色氨酸代谢物 5-羟基吲哚-3-乙酸(5-HIAA)在有胰岛素抵抗和无胰岛素抵抗的小鼠中浓度较低。我们进一步证明,色氨酸向 5-HIAA 的微生物转化是由伯克霍尔德氏菌(Burkholderia spp.从机理上讲,5-HIAA 通过直接激活 AhR 促进肝脏胰岛素信号转导,而 AhR 可刺激 TSC2 转录,从而抑制 mTORC1 信号转导。此外,T2D 患者粪便中的 5-HIAA 水平降低。我们的研究结果确定了微生物从色氨酸产生 5-HIAA 的非经典途径,并表明 5-HIAA 可能会缓解 T2D 的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Unraveling abiotic organic synthesis pathways in the mafic crust of mid-ocean ridges. Cobalt-based pyroxenes: A new playground for Kitaev physics CD73 promotes non–small cell lung cancer metastasis by regulating Axl signaling independent of GAS6 Photovoltaic-driven dual-oxidation seawater electrolyzer for sustainable lithium recovery Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1