Photovoltaic-driven dual-oxidation seawater electrolyzer for sustainable lithium recovery

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-10-18 DOI:10.1073/pnas.2414741121
Xiaosong Gu, Xuezhen Feng, Songhe Yang, Ranhao Wang, Qiang Zeng, Yangzi Shangguan, Jiaxin Liang, Huiling Zhou, Zhiwei Li, Zhang Lin, Chunmiao Zheng, Zhenghe Xu, Hong Chen
{"title":"Photovoltaic-driven dual-oxidation seawater electrolyzer for sustainable lithium recovery","authors":"Xiaosong Gu, Xuezhen Feng, Songhe Yang, Ranhao Wang, Qiang Zeng, Yangzi Shangguan, Jiaxin Liang, Huiling Zhou, Zhiwei Li, Zhang Lin, Chunmiao Zheng, Zhenghe Xu, Hong Chen","doi":"10.1073/pnas.2414741121","DOIUrl":null,"url":null,"abstract":"The insatiable demand for lithium in portable energy storage necessitates a sustainable and low-carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO <jats:sub>2</jats:sub> emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic-driven “dual-oxidation” seawater electrolyzer system for low-carbon footprint and high lithium recovery. A 98.96% lithium leaching rate with 99.60% product purity was demonstrated for lithium recovery from spent LiFePO <jats:sub>4</jats:sub> cathode materials. In-depth mechanism studies reveal that the electric field-driven electrode oxidation and in situ generated oxidative electrolyte synergetically contributes to lithium ions leaching via a structural framework elements oxidation and particle corrosion splitting synergy. This dual-oxidation mechanism facilitates rapid and efficient lithium extraction with broad universality, offering significant economic and environmental benefits. Our work showcases a promising strategy for integrating dual oxidation within a photovoltaic-driven seawater electrolyzer, paving the way for low-carbon lithium recovery from diverse solid wastes and minerals within a sustainable circular economy.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414741121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The insatiable demand for lithium in portable energy storage necessitates a sustainable and low-carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO 2 emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic-driven “dual-oxidation” seawater electrolyzer system for low-carbon footprint and high lithium recovery. A 98.96% lithium leaching rate with 99.60% product purity was demonstrated for lithium recovery from spent LiFePO 4 cathode materials. In-depth mechanism studies reveal that the electric field-driven electrode oxidation and in situ generated oxidative electrolyte synergetically contributes to lithium ions leaching via a structural framework elements oxidation and particle corrosion splitting synergy. This dual-oxidation mechanism facilitates rapid and efficient lithium extraction with broad universality, offering significant economic and environmental benefits. Our work showcases a promising strategy for integrating dual oxidation within a photovoltaic-driven seawater electrolyzer, paving the way for low-carbon lithium recovery from diverse solid wastes and minerals within a sustainable circular economy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续锂回收的光伏驱动双氧化海水电解槽
便携式能源储存对锂的需求量巨大,因此必须采用可持续的低碳方法来回收锂。传统的湿法冶金和火法冶金方法涉及大量危险化学品和大量二氧化碳排放。在此,我们通过将电极氧化与电解质氧化相结合,建立了一个光伏驱动的 "双氧化 "海水电解槽系统,实现了低碳足迹和高锂回收率。从废 LiFePO 4 正极材料中回收锂时,锂浸出率达到 98.96%,产品纯度达到 99.60%。深入的机理研究表明,电场驱动的电极氧化和原位生成的氧化电解质通过结构框架元素氧化和颗粒腐蚀分裂协同作用,共同促进了锂离子的浸出。这种双重氧化机制有助于快速高效地提取锂,具有广泛的普遍性,可带来显著的经济和环境效益。我们的工作展示了将双重氧化作用整合到光伏驱动的海水电解槽中的可行策略,为在可持续循环经济中从各种固体废物和矿物中进行低碳锂回收铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Unraveling abiotic organic synthesis pathways in the mafic crust of mid-ocean ridges. Cobalt-based pyroxenes: A new playground for Kitaev physics CD73 promotes non–small cell lung cancer metastasis by regulating Axl signaling independent of GAS6 Photovoltaic-driven dual-oxidation seawater electrolyzer for sustainable lithium recovery Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1