Al-Hassan Soliman Wadan, Muhammad Liaquat Raza, Nasrollah Moradikor
{"title":"Synaptic modulation by coffee compounds: Insights into neural plasticity.","authors":"Al-Hassan Soliman Wadan, Muhammad Liaquat Raza, Nasrollah Moradikor","doi":"10.1016/bs.pbr.2024.06.008","DOIUrl":null,"url":null,"abstract":"<p><p>The physiological structure and functioning of the brain are determined by activity-dependent processes and affected by \"synapse plasticity.\" Because chemical transmitters target and regulate synapses, exogenous chemical stimulants and transmitters can alter their physiological functions by interacting with synaptic surface receptors or chemical modulators. Caffeine, a commonly used pharmacologic substance, can target and alter synapses. It impact various biological, chemical, and metabolic processes related to synaptic function. This chapter investigates how caffeine affects fluctuations in structure and function in the hippocampus formation and neocortical structure, regions known for their high synaptic plasticity profile. Specifically, caffeine modulates various synaptic receptors and channel activities by mobilizing intracellular calcium, inhibiting phosphodiesterase, and blocking adenosine and GABA cellular receptors. These caffeine-induced pathways and functions allow neurons to generate plastic modulations in synaptic actions such as efficient and morphological transmission. Moreover, at a network level, caffeine can stimulate neural oscillators in the cortex, resulting in repetitive signals that strengthen long-range communication between cortical areas reliant on N-methyl-d-aspartate receptors. This suggests that caffeine could facilitate the reorganization of cortical network functions through its effects on synaptic mobilization.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"289 ","pages":"181-191"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2024.06.008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
The physiological structure and functioning of the brain are determined by activity-dependent processes and affected by "synapse plasticity." Because chemical transmitters target and regulate synapses, exogenous chemical stimulants and transmitters can alter their physiological functions by interacting with synaptic surface receptors or chemical modulators. Caffeine, a commonly used pharmacologic substance, can target and alter synapses. It impact various biological, chemical, and metabolic processes related to synaptic function. This chapter investigates how caffeine affects fluctuations in structure and function in the hippocampus formation and neocortical structure, regions known for their high synaptic plasticity profile. Specifically, caffeine modulates various synaptic receptors and channel activities by mobilizing intracellular calcium, inhibiting phosphodiesterase, and blocking adenosine and GABA cellular receptors. These caffeine-induced pathways and functions allow neurons to generate plastic modulations in synaptic actions such as efficient and morphological transmission. Moreover, at a network level, caffeine can stimulate neural oscillators in the cortex, resulting in repetitive signals that strengthen long-range communication between cortical areas reliant on N-methyl-d-aspartate receptors. This suggests that caffeine could facilitate the reorganization of cortical network functions through its effects on synaptic mobilization.
期刊介绍:
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.