Chongda Luo , Xintong Yan , Shaokang Yang , Sichen Ren , Yan Luo , Jiazheng Li , Ping Wang , Yunfeng Shao , Wei Li , Song Li , Jingjing Yang , Ruiyuan Cao , Wu Zhong
{"title":"Antiviral activity of vitamin D derivatives against severe fever with thrombocytopenia syndrome virus in vitro and in vivo","authors":"Chongda Luo , Xintong Yan , Shaokang Yang , Sichen Ren , Yan Luo , Jiazheng Li , Ping Wang , Yunfeng Shao , Wei Li , Song Li , Jingjing Yang , Ruiyuan Cao , Wu Zhong","doi":"10.1016/j.virs.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus that causes the severe fever thrombocytopenia syndrome, which manifests as fever and haemorrhage, accompanied by severe neurological complications. To date, no specific antiviral drugs have been approved for this indication. Herein, we investigated whether vitamin D derivatives inhibit SFTSV both <em>in vitro</em> and <em>in vivo</em>. An <em>in vitro</em> study demonstrated that vitamin D derivatives significantly suppressed viral RNA replication, plaque formation, and protein expression in a dose-dependent manner. Subsequently, <em>in vivo</em> studies revealed that doxercalciferol and alfacalcidol were associated with increased survival and reduced viral RNA load in the blood. Time-of-addition assay suggested that vitamin D derivatives primarily acted during the post-entry phase of SFTSV infection. However, cytopathic effect protective activity was not observed in RIG-I immunodeficient cell line Huh7.5, and the administration of vitamin D derivatives did not improve the survival rates or reduce the blood viral loads in adult A129 mice. Further transcriptome exploration into the antiviral mechanism revealed that alfacalcidol stimulates host innate immunity to exert antiviral effects. To expand the application of vitamin D derivatives, <em>in vitro</em> and <em>in vivo</em> drug combination assays were performed, which highlighted the synergistic effects of vitamin D derivatives and T-705 on SFTSV. The combination of alfacalcidol and T-705 significantly enhanced the therapeutic effects in mice. This study highlights the potential of vitamin D derivatives against SFTSV and suggests that they may have synergistic effects with other compounds used in the treatment of SFTSV infection.</div></div>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":"39 5","pages":"Pages 802-811"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995820X24001342","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus that causes the severe fever thrombocytopenia syndrome, which manifests as fever and haemorrhage, accompanied by severe neurological complications. To date, no specific antiviral drugs have been approved for this indication. Herein, we investigated whether vitamin D derivatives inhibit SFTSV both in vitro and in vivo. An in vitro study demonstrated that vitamin D derivatives significantly suppressed viral RNA replication, plaque formation, and protein expression in a dose-dependent manner. Subsequently, in vivo studies revealed that doxercalciferol and alfacalcidol were associated with increased survival and reduced viral RNA load in the blood. Time-of-addition assay suggested that vitamin D derivatives primarily acted during the post-entry phase of SFTSV infection. However, cytopathic effect protective activity was not observed in RIG-I immunodeficient cell line Huh7.5, and the administration of vitamin D derivatives did not improve the survival rates or reduce the blood viral loads in adult A129 mice. Further transcriptome exploration into the antiviral mechanism revealed that alfacalcidol stimulates host innate immunity to exert antiviral effects. To expand the application of vitamin D derivatives, in vitro and in vivo drug combination assays were performed, which highlighted the synergistic effects of vitamin D derivatives and T-705 on SFTSV. The combination of alfacalcidol and T-705 significantly enhanced the therapeutic effects in mice. This study highlights the potential of vitamin D derivatives against SFTSV and suggests that they may have synergistic effects with other compounds used in the treatment of SFTSV infection.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769