首页 > 最新文献

Virologica Sinica最新文献

英文 中文
Structure-function insights into the dual role of African swine fever virus pB318L: A typical geranylgeranyl-diphosphate synthase and a nuclear import protein.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-04-02 DOI: 10.1016/j.virs.2025.03.013
Hai-Fan Zhao, Ying Wang, Xiao-Hong Liu, Xian-Hui Liu, Zhi Geng, Zeng-Qiang Gao, Li Huang, Chang-Jiang Weng, Yu-Hui Dong, Heng Zhang

African swine fever virus (ASFV) pB318L is an important protein for viral replication that acts as a membrane-bound trans-geranylgeranyl-diphosphate synthase (GGPPS) catalyzing the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates. Recently we solved the crystal structure pB318L lacking N-terminal transmembrane region and performed a preliminary structural analysis. In this study, structure-based mutagenesis study and geranylgeranyl pyrophosphate (GGPP) production assay further revealed the key residues for the GGPPS activity. Structural comparison showed pB318L displays a strong similarity to typical GGPPSs instead of protein prenyltransferases. The phylogenetic analysis indicated pB318L may share a common ancestor with the GGPPSs from Brassicaceae plants rather than from its natural host. The subcellular localization analysis showed pB318L is localized in both nucleus and cytoplasm (including the endoplasmic reticulum membrane and mitochondria outer membrane). A unique N-terminal nuclear localization signal (NLS) following the transmembrane region was discovered in pB318L and the NLS was confirmed to be required for the nuclear import. We further revealed the NLS plays an essential role in the interaction with nuclear transporter karyopherin subunit alpha 1 (KPNA1). Their interaction may suppress signal transducers and activators of transcription 1 (STAT1) translocation and subsequently competitively inhibit nuclear import of IFN-stimulated gene factor 3 (ISGF3) complex. Our biochemical, structural and cellular analyses provide novel insights to pB318L that acts as an essential GGPPS that promotes viral replication and as a nuclear import protein that may be involved in immune evasion of ASFV.

{"title":"Structure-function insights into the dual role of African swine fever virus pB318L: A typical geranylgeranyl-diphosphate synthase and a nuclear import protein.","authors":"Hai-Fan Zhao, Ying Wang, Xiao-Hong Liu, Xian-Hui Liu, Zhi Geng, Zeng-Qiang Gao, Li Huang, Chang-Jiang Weng, Yu-Hui Dong, Heng Zhang","doi":"10.1016/j.virs.2025.03.013","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.013","url":null,"abstract":"<p><p>African swine fever virus (ASFV) pB318L is an important protein for viral replication that acts as a membrane-bound trans-geranylgeranyl-diphosphate synthase (GGPPS) catalyzing the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates. Recently we solved the crystal structure pB318L lacking N-terminal transmembrane region and performed a preliminary structural analysis. In this study, structure-based mutagenesis study and geranylgeranyl pyrophosphate (GGPP) production assay further revealed the key residues for the GGPPS activity. Structural comparison showed pB318L displays a strong similarity to typical GGPPSs instead of protein prenyltransferases. The phylogenetic analysis indicated pB318L may share a common ancestor with the GGPPSs from Brassicaceae plants rather than from its natural host. The subcellular localization analysis showed pB318L is localized in both nucleus and cytoplasm (including the endoplasmic reticulum membrane and mitochondria outer membrane). A unique N-terminal nuclear localization signal (NLS) following the transmembrane region was discovered in pB318L and the NLS was confirmed to be required for the nuclear import. We further revealed the NLS plays an essential role in the interaction with nuclear transporter karyopherin subunit alpha 1 (KPNA1). Their interaction may suppress signal transducers and activators of transcription 1 (STAT1) translocation and subsequently competitively inhibit nuclear import of IFN-stimulated gene factor 3 (ISGF3) complex. Our biochemical, structural and cellular analyses provide novel insights to pB318L that acts as an essential GGPPS that promotes viral replication and as a nuclear import protein that may be involved in immune evasion of ASFV.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SARS-CoV-2 NSP4 T492I mutation promotes double-membrane vesicle formation to facilitate transmission. SARS-CoV-2 NSP4 T492I 突变促进了双膜囊泡的形成,从而有利于传播。
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-27 DOI: 10.1016/j.virs.2025.03.010
Pei Wang, Buyun Tian, Ke Xiao, Wei Ji, Zonghong Li

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in mutations not only in the spike protein, aiding immune evasion, but also in the NSP3/4/6 proteins, crucial for regulating double-membrane vesicle (DMV) formation. However, the functional consequences of these NSP3/4/6 mutations remain poorly understood. In this study, a systematic analysis was conducted to investigate the evolutionary patterns of NSP3/4/6 mutations and their impact on DMV formation. The findings revealed that the NSP4 T492I mutation, a prevalent mutation found in all Delta and Omicron sub-lineages, notably enhances DMV formation. Mechanistically, the NSP4 T492I mutation enhances its homodimerization, leading to an increase in the size of puncta induced by NSP3/4, and also augments endoplasmic reticulum (ER) membrane curvature, resulting in a higher DMV density per fluorescent puncta. This study underscores the significance of the NSP4 T492I mutation in modulating DMV formation, with potential implications for the transmission dynamics of SARS-CoV-2. It contributes valuable insights into how these mutations impact viral replication and pathogenesis.

{"title":"The SARS-CoV-2 NSP4 T492I mutation promotes double-membrane vesicle formation to facilitate transmission.","authors":"Pei Wang, Buyun Tian, Ke Xiao, Wei Ji, Zonghong Li","doi":"10.1016/j.virs.2025.03.010","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.010","url":null,"abstract":"<p><p>The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in mutations not only in the spike protein, aiding immune evasion, but also in the NSP3/4/6 proteins, crucial for regulating double-membrane vesicle (DMV) formation. However, the functional consequences of these NSP3/4/6 mutations remain poorly understood. In this study, a systematic analysis was conducted to investigate the evolutionary patterns of NSP3/4/6 mutations and their impact on DMV formation. The findings revealed that the NSP4 T492I mutation, a prevalent mutation found in all Delta and Omicron sub-lineages, notably enhances DMV formation. Mechanistically, the NSP4 T492I mutation enhances its homodimerization, leading to an increase in the size of puncta induced by NSP3/4, and also augments endoplasmic reticulum (ER) membrane curvature, resulting in a higher DMV density per fluorescent puncta. This study underscores the significance of the NSP4 T492I mutation in modulating DMV formation, with potential implications for the transmission dynamics of SARS-CoV-2. It contributes valuable insights into how these mutations impact viral replication and pathogenesis.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into cross-species infection by coronavirus: Porcine epidemic diarrhea virus infections in the rodent.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-27 DOI: 10.1016/j.virs.2025.03.012
Jianing Chen, Zemei Wang, Shengyu Lin, Gao Menglin, Yongheng Shao, Shuxian Li, Qingbo Chen, Yaru Cui, Yonghao Hu, Guangliang Liu

The cross-species infection of coronaviruses has resulted in several major epidemics since 2003. Therefore, it is of great importance to explore the host ranges of coronaviruses and their features among different hosts. In this study, the porcine epidemic diarrhea virus (PEDV), with swine as the only natural reservoir, was detected in rat fecal samples collected from pig farms. Further animal tests showed PEDV can cause systemic infections in neonate mice and rats. The brain, lung intestine and spleen were all targets for PEDV in rodents in contrast to the intestine being targeted in pigs. Morbidity and mortality vary via different infection routes. PEDV was also detectable in feces after infection, suggesting that the infected rodents were potential infectious sources. Moreover, the cerebric tropism of PEDV was verified in piglets, which had not been identified before. In conclusion, our findings demonstrate that PEDV can cross the species barrier to infect mice and rats through different routes. Although it is highly devastating to piglets, PEDV changes the target organs and turns to be milder when meeting with new hosts. Based on these findings, more attention should be paid to the cross-species infection of PEDV to avoid the emergence of another zoonosis.

{"title":"Insights into cross-species infection by coronavirus: Porcine epidemic diarrhea virus infections in the rodent.","authors":"Jianing Chen, Zemei Wang, Shengyu Lin, Gao Menglin, Yongheng Shao, Shuxian Li, Qingbo Chen, Yaru Cui, Yonghao Hu, Guangliang Liu","doi":"10.1016/j.virs.2025.03.012","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.012","url":null,"abstract":"<p><p>The cross-species infection of coronaviruses has resulted in several major epidemics since 2003. Therefore, it is of great importance to explore the host ranges of coronaviruses and their features among different hosts. In this study, the porcine epidemic diarrhea virus (PEDV), with swine as the only natural reservoir, was detected in rat fecal samples collected from pig farms. Further animal tests showed PEDV can cause systemic infections in neonate mice and rats. The brain, lung intestine and spleen were all targets for PEDV in rodents in contrast to the intestine being targeted in pigs. Morbidity and mortality vary via different infection routes. PEDV was also detectable in feces after infection, suggesting that the infected rodents were potential infectious sources. Moreover, the cerebric tropism of PEDV was verified in piglets, which had not been identified before. In conclusion, our findings demonstrate that PEDV can cross the species barrier to infect mice and rats through different routes. Although it is highly devastating to piglets, PEDV changes the target organs and turns to be milder when meeting with new hosts. Based on these findings, more attention should be paid to the cross-species infection of PEDV to avoid the emergence of another zoonosis.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Qingqi Guxue Decoction induces S cell cycle arrest to inhibit replication of severe fever with thrombocytopenia syndrome virus. 青芪归脾汤能诱导 S 细胞周期停滞,抑制严重发热伴血小板减少综合征病毒的复制。
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-27 DOI: 10.1016/j.virs.2025.03.011
Xixi Shi, Zining Wang, Zixiang Liu, Qinting Lin, Mengqian Huang, Tze Yean Lim, Xiaoyan Li, Tao Wang

Severe fever with thrombocytopenia syndrome (SFTS) is a novel emerging acute infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV), characterized by high fever and thrombocytopenia. It has been proved that traditional Chinese medicine (TCM) has displayed definite therapeutic effects on viral hemorrhagic fever, indicating its potential to treat SFTS. In this study, SFTS-relative key targets were predicted via Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking was then used to select stable binders. Molecules matched TCMs were identified, and a new prescription, Qingqi Guxue decoction (QQGX), was formulated to clear heat and nourish blood, with a resulting drug composition network. We explored the optimal drug proportion for QQGX. Through an in-depth study of molecular mechanisms, we found that QQGX induces S phase arrest by promoting the degradation of Cyclin A2 (CCNA2) and Cyclin-dependent kinase 2 (CDK2), thereby inhibiting SFTSV replication. Finally, we verified the effectiveness and safety of QQGX based on the mouse liver bile duct organoid model infected with SFTSV. In summary, our study prepared a TCM decoction using the method of network pharmacology. This decoction has a significant inhibitory effect on the replication of SFTSV and provides a new treatment strategy for hemorrhagic fever with TCM.

{"title":"Qingqi Guxue Decoction induces S cell cycle arrest to inhibit replication of severe fever with thrombocytopenia syndrome virus.","authors":"Xixi Shi, Zining Wang, Zixiang Liu, Qinting Lin, Mengqian Huang, Tze Yean Lim, Xiaoyan Li, Tao Wang","doi":"10.1016/j.virs.2025.03.011","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.011","url":null,"abstract":"<p><p>Severe fever with thrombocytopenia syndrome (SFTS) is a novel emerging acute infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV), characterized by high fever and thrombocytopenia. It has been proved that traditional Chinese medicine (TCM) has displayed definite therapeutic effects on viral hemorrhagic fever, indicating its potential to treat SFTS. In this study, SFTS-relative key targets were predicted via Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking was then used to select stable binders. Molecules matched TCMs were identified, and a new prescription, Qingqi Guxue decoction (QQGX), was formulated to clear heat and nourish blood, with a resulting drug composition network. We explored the optimal drug proportion for QQGX. Through an in-depth study of molecular mechanisms, we found that QQGX induces S phase arrest by promoting the degradation of Cyclin A2 (CCNA2) and Cyclin-dependent kinase 2 (CDK2), thereby inhibiting SFTSV replication. Finally, we verified the effectiveness and safety of QQGX based on the mouse liver bile duct organoid model infected with SFTSV. In summary, our study prepared a TCM decoction using the method of network pharmacology. This decoction has a significant inhibitory effect on the replication of SFTSV and provides a new treatment strategy for hemorrhagic fever with TCM.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and immunoprotection assessment of novel vaccines for avian infectious bronchitis virus.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-25 DOI: 10.1016/j.virs.2025.03.008
Benli Huang, Sheng Chen, Zhanxin Wang, Keyu Feng, Yutao Teng, Ruoying Li, Guanming Shao, Jiaqian Rao, Xinheng Zhang, Qingmei Xie

Infectious bronchitis (IB), a highly contagious acute respiratory disease affecting avian species, poses significant challenges to poultry production. The causative agent, Infectious Bronchitis Virus (IBV), exhibits a high mutation rate, leading to limited cross-protection by existing vaccines. This necessitates the development of novel vaccines. This study, based on preliminary investigations conducted by our research team, identified six potential strains (PYG QX1, ZQF QX2, FQH QX3, LYZ QX4, XXX QX5, and CSL strains) for vaccine development. Previous pathogenicity test and serum cross-neutralization experiments conducted in this study have demonstrated that the FQH QX3 strain exhibited the weakest pathogenicity and the broadest spectrum of serum neutralization, while the CSL strain showed the highest pathogenicity and was the most challenging to neutralize, posing the greatest difficulty in prevention and control. Subsequently, we constructed and rescued recombinant vaccine candidates, H120-FQH QX3, and H120-CSL, expressing the S1 and N proteins of the FQH QX3 and CSL strains, respectively. Immunization protection experiments indicated that the H120-CSL recombinant vaccine candidate exhibited the most effective immune protection, making it a promising candidate for further study and evaluation as a recombinant vaccine. The S1 and N genes of the CSL strain demonstrated strong immunogenicity, making them potential candidate antigen genes for future vaccine development.

传染性支气管炎(IB)是一种影响禽类的高传染性急性呼吸道疾病,给家禽生产带来了巨大挑战。病原体传染性支气管炎病毒 (IBV) 变异率很高,导致现有疫苗的交叉保护作用有限。因此有必要开发新型疫苗。本研究基于我们研究团队进行的初步调查,确定了六种可能用于疫苗开发的毒株(PYG QX1、ZQF QX2、FQH QX3、LYZ QX4、XXX QX5 和 CSL 株)。此前进行的致病性试验和血清交叉中和实验表明,FQH QX3 株的致病性最弱,血清中和谱最广,而 CSL 株的致病性最高,中和难度最大,防控难度最大。随后,我们构建并挽救了重组候选疫苗H120-FQH QX3和H120-CSL,分别表达了FQH QX3株和CSL株的S1和N蛋白。免疫保护实验表明,H120-CSL 重组候选疫苗表现出最有效的免疫保护,因此有望作为重组疫苗进行进一步研究和评估。CSL 株的 S1 和 N 基因表现出很强的免疫原性,使其成为未来疫苗开发的潜在候选抗原基因。
{"title":"Development and immunoprotection assessment of novel vaccines for avian infectious bronchitis virus.","authors":"Benli Huang, Sheng Chen, Zhanxin Wang, Keyu Feng, Yutao Teng, Ruoying Li, Guanming Shao, Jiaqian Rao, Xinheng Zhang, Qingmei Xie","doi":"10.1016/j.virs.2025.03.008","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.008","url":null,"abstract":"<p><p>Infectious bronchitis (IB), a highly contagious acute respiratory disease affecting avian species, poses significant challenges to poultry production. The causative agent, Infectious Bronchitis Virus (IBV), exhibits a high mutation rate, leading to limited cross-protection by existing vaccines. This necessitates the development of novel vaccines. This study, based on preliminary investigations conducted by our research team, identified six potential strains (PYG QX1, ZQF QX2, FQH QX3, LYZ QX4, XXX QX5, and CSL strains) for vaccine development. Previous pathogenicity test and serum cross-neutralization experiments conducted in this study have demonstrated that the FQH QX3 strain exhibited the weakest pathogenicity and the broadest spectrum of serum neutralization, while the CSL strain showed the highest pathogenicity and was the most challenging to neutralize, posing the greatest difficulty in prevention and control. Subsequently, we constructed and rescued recombinant vaccine candidates, H120-FQH QX3, and H120-CSL, expressing the S1 and N proteins of the FQH QX3 and CSL strains, respectively. Immunization protection experiments indicated that the H120-CSL recombinant vaccine candidate exhibited the most effective immune protection, making it a promising candidate for further study and evaluation as a recombinant vaccine. The S1 and N genes of the CSL strain demonstrated strong immunogenicity, making them potential candidate antigen genes for future vaccine development.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a reporter HBoV1 strain for antiviral drug screening and life cycle studies.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-25 DOI: 10.1016/j.virs.2025.03.009
Jielin Tang, Sijie Chen, Yi Zhong, Yijun Deng, Dan Huang, Junjun Liu, Yi Zheng, Jiyuan Xu, Bao Xue, Fan Wang, Yuan Zhou, Hanzhong Wang, Qi Yang, Xinwen Chen

Human bocavirus 1 (HBoV1; family: Parvoviridae) causes a wide spectrum of respiratory diseases in children and gastroenteritis in adults. A lack of sensitive cell lines and efficient animal models hinders research on HBoV, including the development of anti-HBoV drugs or vaccines. Although the construction of a wild-type HBoV1 infectious clone has been reported, generating HBoV1 infectious clone carrying foreign reporter genes with suitable insertion sites in its genome while retaining replicative ability remains challenging. Here, HBoV1 infectious clones harboring the 11-amino-acid HiBiT tag at five distinct insertion sites were constructed and evaluated. Only the recombinant HBoV1 carrying the HiBiT tag in the N-terminus of the NS1 protein (HBoV1-HiBiTNS1) displayed comparable characteristics to wild-type HBoV1 as determined via the analysis of viral DNA copy number, NanoLuc activity, viral protein expression, and the formation of replication intermediates. Notably, the replication kinetics of HBoV1-HiBiTNS1 could be examined by monitoring NanoLuc activity, which was noted to be correlated with the viral DNA level. Additionally, we successfully applied HiBiT-tagged HBoV1 for the evaluation of antiviral drug activity and identified ivermectin (EC50 = 2.27 μM) as a potent anti-HBoV1 replication drug. Overall, our study demonstrated that the HBoV1-HiBiTNS1 reporter can serve as a convenient platform for screening candidate drugs targeting HBoV1 replication and may also be useful for investigating the life cycle of the virus.

{"title":"Development of a reporter HBoV1 strain for antiviral drug screening and life cycle studies.","authors":"Jielin Tang, Sijie Chen, Yi Zhong, Yijun Deng, Dan Huang, Junjun Liu, Yi Zheng, Jiyuan Xu, Bao Xue, Fan Wang, Yuan Zhou, Hanzhong Wang, Qi Yang, Xinwen Chen","doi":"10.1016/j.virs.2025.03.009","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.009","url":null,"abstract":"<p><p>Human bocavirus 1 (HBoV1; family: Parvoviridae) causes a wide spectrum of respiratory diseases in children and gastroenteritis in adults. A lack of sensitive cell lines and efficient animal models hinders research on HBoV, including the development of anti-HBoV drugs or vaccines. Although the construction of a wild-type HBoV1 infectious clone has been reported, generating HBoV1 infectious clone carrying foreign reporter genes with suitable insertion sites in its genome while retaining replicative ability remains challenging. Here, HBoV1 infectious clones harboring the 11-amino-acid HiBiT tag at five distinct insertion sites were constructed and evaluated. Only the recombinant HBoV1 carrying the HiBiT tag in the N-terminus of the NS1 protein (HBoV1-HiBiT<sub>NS1</sub>) displayed comparable characteristics to wild-type HBoV1 as determined via the analysis of viral DNA copy number, NanoLuc activity, viral protein expression, and the formation of replication intermediates. Notably, the replication kinetics of HBoV1-HiBiT<sub>NS1</sub> could be examined by monitoring NanoLuc activity, which was noted to be correlated with the viral DNA level. Additionally, we successfully applied HiBiT-tagged HBoV1 for the evaluation of antiviral drug activity and identified ivermectin (EC50 = 2.27 μM) as a potent anti-HBoV1 replication drug. Overall, our study demonstrated that the HBoV1-HiBiT<sub>NS1</sub> reporter can serve as a convenient platform for screening candidate drugs targeting HBoV1 replication and may also be useful for investigating the life cycle of the virus.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host factor Naf1 restricts HIV-1 infection of myeloid cells and compromises the capacity of dendritic cell to prime CD4+ T cell. 宿主因子 Naf1 限制了 HIV-1 对髓细胞的感染,并削弱了树突状细胞为 CD4+ T 细胞提供能量的能力。
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-24 DOI: 10.1016/j.virs.2025.03.007
Chengzuo Xie, Xia Jin, Wan-Wei Li, Jian-Hua Wang

Naf1 (Nef-associated factor 1) is a host protein that interacts with human immunodeficiency virus type 1 (HIV-1) Nef protein. We and others have previously demonstrated that Naf1 restricts HIV-1 infection of T-lymphocytes. Myeloid cells are targets for HIV infection, but Naf1 expression in myeloid cells and whether it also regulates HIV infection in these cells are not yet identified. In this study, we found that Naf1 had a higher expression in CD14+ monocytes than in monocyte-derived dendritic cells (MDDCs), and its expression in both types of cells could be induced by HIV-1 gp120 glycoproteins or viral particles. Importantly, the expression of Naf1 restricted HIV-1 infection in monocytes and MDDCs. Functional investigation showed that both the constitutive and the induced expression of Naf1 inhibited NF-κB signaling in MDDCs and reduced the basal level or LPS (Lipopolysaccharide)-stimulated production of cytokines. Moreover, Naf1 reduced the expression of ICAM-1 (intercellular cell adhesion molecule-1) on MDDCs and compromised their capacity to prime the activation of resting CD4+ T cells in co-culture. In light of the essential role of NF-κB signaling for HIV-1 transcription, Naf1-mediated inhibition of NF-κB signaling may hinder a robust viral replication in MDDCs and help maintain viral persistence. Furthermore, virus-induced Naf1 expression in MDDCs may diminish the cross-talk between DC (dendritic cell) and T cells, hence suppressing the activation of antiviral immune responses. Taken together, we identified the new function of Naf1 in myeloid cells. Those findings may facilitate the understanding for the host restriction of HIV-1 infection in myeloid cells.

{"title":"Host factor Naf1 restricts HIV-1 infection of myeloid cells and compromises the capacity of dendritic cell to prime CD4<sup>+</sup> T cell.","authors":"Chengzuo Xie, Xia Jin, Wan-Wei Li, Jian-Hua Wang","doi":"10.1016/j.virs.2025.03.007","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.007","url":null,"abstract":"<p><p>Naf1 (Nef-associated factor 1) is a host protein that interacts with human immunodeficiency virus type 1 (HIV-1) Nef protein. We and others have previously demonstrated that Naf1 restricts HIV-1 infection of T-lymphocytes. Myeloid cells are targets for HIV infection, but Naf1 expression in myeloid cells and whether it also regulates HIV infection in these cells are not yet identified. In this study, we found that Naf1 had a higher expression in CD14<sup>+</sup> monocytes than in monocyte-derived dendritic cells (MDDCs), and its expression in both types of cells could be induced by HIV-1 gp120 glycoproteins or viral particles. Importantly, the expression of Naf1 restricted HIV-1 infection in monocytes and MDDCs. Functional investigation showed that both the constitutive and the induced expression of Naf1 inhibited NF-κB signaling in MDDCs and reduced the basal level or LPS (Lipopolysaccharide)-stimulated production of cytokines. Moreover, Naf1 reduced the expression of ICAM-1 (intercellular cell adhesion molecule-1) on MDDCs and compromised their capacity to prime the activation of resting CD4<sup>+</sup> T cells in co-culture. In light of the essential role of NF-κB signaling for HIV-1 transcription, Naf1-mediated inhibition of NF-κB signaling may hinder a robust viral replication in MDDCs and help maintain viral persistence. Furthermore, virus-induced Naf1 expression in MDDCs may diminish the cross-talk between DC (dendritic cell) and T cells, hence suppressing the activation of antiviral immune responses. Taken together, we identified the new function of Naf1 in myeloid cells. Those findings may facilitate the understanding for the host restriction of HIV-1 infection in myeloid cells.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus profiling of bronchoalveolar lavage fluid in hospitalized non-COVID-19 adult patients with pulmonary infection from November 2020 to November 2021.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-20 DOI: 10.1016/j.virs.2025.03.005
Liangyu Li, Haiyue Zhang, Pei Xiong, Chan Liu, Lu Wan, Mengling Liu, Jieyu Mao, Ruiyun Li, Min Shang, Hailing Liu, Yuchuan Luo, Jing Yin, Xiaojun Wu, Jianjun Chen

Identifying the cause of respiratory tract infections is important for reducing the burden of diagnosis and treatment. To assess viral etiologies of hospitalized patients with pulmonary infection (including patients with lower respiratory tract infection, tuberculosis, lung cancer, and pulmonary nodules), bronchoalveolar lavage fluid (BALF) specimens were collected from non-COVID-19 adult patients (n = 333) between November 2020 and November 2021. Multiple common respiratory pathogens were detected using multiplex reverse-transcription polymerase chain reaction. The result showed that at least one virus was identified in 35.44% (118/333) of the cases. Among these, influenza virus was the most commonly identified, followed by the parainfluenza virus, coronavirus, human rhinoviruses, and human respiratory syncytial viruses. The tuberculosis group demonstrated the highest viral detection rate, yet paradoxically exhibited the lowest co-infection rate. In contrast, the highest co-infection frequency was observed in the pulmonary nodules group. Patients with viral infections exhibited more severe clinical symptoms compared to those without detected viral infections. However, this observation was only noted in the lower respiratory tract infection group among the different disease groups. Notably, among patients infected with a specific virus, there were no significant differences in viral load between single and co-infections. Our study identified the major causative agents in hospitalized adult patients with pulmonary infection, offering insights for precise disease diagnosis and the prevention of unnecessary use of antimicrobial drugs.

{"title":"Virus profiling of bronchoalveolar lavage fluid in hospitalized non-COVID-19 adult patients with pulmonary infection from November 2020 to November 2021.","authors":"Liangyu Li, Haiyue Zhang, Pei Xiong, Chan Liu, Lu Wan, Mengling Liu, Jieyu Mao, Ruiyun Li, Min Shang, Hailing Liu, Yuchuan Luo, Jing Yin, Xiaojun Wu, Jianjun Chen","doi":"10.1016/j.virs.2025.03.005","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.005","url":null,"abstract":"<p><p>Identifying the cause of respiratory tract infections is important for reducing the burden of diagnosis and treatment. To assess viral etiologies of hospitalized patients with pulmonary infection (including patients with lower respiratory tract infection, tuberculosis, lung cancer, and pulmonary nodules), bronchoalveolar lavage fluid (BALF) specimens were collected from non-COVID-19 adult patients (n = 333) between November 2020 and November 2021. Multiple common respiratory pathogens were detected using multiplex reverse-transcription polymerase chain reaction. The result showed that at least one virus was identified in 35.44% (118/333) of the cases. Among these, influenza virus was the most commonly identified, followed by the parainfluenza virus, coronavirus, human rhinoviruses, and human respiratory syncytial viruses. The tuberculosis group demonstrated the highest viral detection rate, yet paradoxically exhibited the lowest co-infection rate. In contrast, the highest co-infection frequency was observed in the pulmonary nodules group. Patients with viral infections exhibited more severe clinical symptoms compared to those without detected viral infections. However, this observation was only noted in the lower respiratory tract infection group among the different disease groups. Notably, among patients infected with a specific virus, there were no significant differences in viral load between single and co-infections. Our study identified the major causative agents in hospitalized adult patients with pulmonary infection, offering insights for precise disease diagnosis and the prevention of unnecessary use of antimicrobial drugs.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SARS-CoV-2 3CL protease inhibits pyroptosis through the cleavage of gasdermin D.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-19 DOI: 10.1016/j.virs.2025.03.006
Yecheng Zhang, Xinlei Ji, Dan Huang, Gen Lu, Xinwen Chen

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019, can cause acute respiratory symptoms and even death globally. However, the immune escape mechanism and viral pathogenesis remain poorly understood. Here, we report that the SARS-CoV-2 3C-like (3CL) protease specifically cleaves gasdermin D (GSDMD) at Q29 and Q193, producing two N-terminal fragments, GSDMD1-29 and GSDMD1-193. We also found that SARS-CoV-2 infection induced the cleavage of GSDMD. Then, we demonstrated that the ability to cleave GSDMD was dependent on the protease activity of the 3CL protease. Interestingly, unlike the GSDMD1-275 fragment cleaved by caspase-1, GSDMD1-29 and GSDMD1-193 did not trigger pyroptosis or inhibit SARS-CoV-2 replication. Additionally, various RNA viral proteases display different preferences for cleaving GSDMD at Q29 and Q193. Our findings reveal a mechanism by which SARS-CoV-2 and other RNA viruses inhibit pyroptosis, highlighting the critical role of the 3CL protease in immune evasion and viral replication.

严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)是 2019 年新型冠状病毒病的病原体,可在全球范围内引起急性呼吸道症状甚至死亡。然而,人们对其免疫逃逸机制和病毒致病机理仍然知之甚少。在这里,我们报告了 SARS-CoV-2 3C-like (3CL) 蛋白酶特异性地裂解 Q29 和 Q193 处的 gasdermin D (GSDMD),产生两个 N 端片段,即 GSDMD1-29 和 GSDMD1-193。我们还发现,SARS-CoV-2 感染会诱导 GSDMD 的裂解。然后,我们证明了 GSDMD 的裂解能力取决于 3CL 蛋白酶的蛋白酶活性。有趣的是,与被caspase-1裂解的GSDMD1-275片段不同,GSDMD1-29和GSDMD1-193不会引发热休克或抑制SARS-CoV-2的复制。此外,各种 RNA 病毒蛋白酶对裂解 Q29 和 Q193 处的 GSDMD 有不同的偏好。我们的研究结果揭示了 SARS-CoV-2 和其他 RNA 病毒抑制热蛋白沉积的机制,突出了 3CL 蛋白酶在免疫逃避和病毒复制中的关键作用。
{"title":"The SARS-CoV-2 3CL protease inhibits pyroptosis through the cleavage of gasdermin D.","authors":"Yecheng Zhang, Xinlei Ji, Dan Huang, Gen Lu, Xinwen Chen","doi":"10.1016/j.virs.2025.03.006","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.006","url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of novel coronavirus disease 2019, can cause acute respiratory symptoms and even death globally. However, the immune escape mechanism and viral pathogenesis remain poorly understood. Here, we report that the SARS-CoV-2 3C-like (3CL) protease specifically cleaves gasdermin D (GSDMD) at Q29 and Q193, producing two N-terminal fragments, GSDMD<sub>1-29</sub> and GSDMD<sub>1-193</sub>. We also found that SARS-CoV-2 infection induced the cleavage of GSDMD. Then, we demonstrated that the ability to cleave GSDMD was dependent on the protease activity of the 3CL protease. Interestingly, unlike the GSDMD<sub>1-275</sub> fragment cleaved by caspase-1, GSDMD<sub>1-29</sub> and GSDMD<sub>1-193</sub> did not trigger pyroptosis or inhibit SARS-CoV-2 replication. Additionally, various RNA viral proteases display different preferences for cleaving GSDMD at Q29 and Q193. Our findings reveal a mechanism by which SARS-CoV-2 and other RNA viruses inhibit pyroptosis, highlighting the critical role of the 3CL protease in immune evasion and viral replication.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidemiological and molecular characteristics of human parainfluenza virus in southern China during 2016-2020.
IF 5.5 3区 医学 Q1 Medicine Pub Date : 2025-03-18 DOI: 10.1016/j.virs.2025.03.004
Yizhe Li, Minjie Liu, Jingyao Liang, Hengming Ye, Mingcui Lyu, Delin Chen, Linyue Liang, Shuqing Zhang, Kexin Zhang, Shu An, Wenle Zhou, Jueheng Wu, Xun Zhu, Zhenjian He

Human parainfluenza viruses (HPIV) are common viral pathogens in acute respiratory infection (ARI). We aimed to describe the epidemiological and molecular characteristics of HPIV from ARI patients. This cross-sectional study was conducted using respiratory samples from 9,696 ARI patients between 2016 and 2020 in southern China. All samples were analyzed by quantitative real-time polymerase chain reaction to determine the presence of HPIV and other common respiratory viruses. Descriptive statistics were performed to determine the temporal and population distribution of HPIV. The full-length hemagglutinin-neuraminidase (HN) gene of HPIV3-positive samples was sequenced for phylogenetic analysis. A total of 577 (6.0%) patients tested positive for HPIV, with HPIV3 being the predominant serotype, accounting for 46.8% of cases. Notably, 66.0% of these HPIV-positive cases were children aged 0-2 years. The prevalence of HPIV infections showed a decreased trend and altered peak during 2016-2020. Cough, fever, sputum production, and rhinorrhea were common respiratory symptoms in HPIV-positive patients. The majority of cases had pneumonia (63.4%). Human rhinovirus (HRV) and human coronavirus (HCoV) were the most common coinfection viruses in HPIV-positive cases, with proportions of 20.1% and 14.4%, respectively. Phylogenetic analysis revealed that the predominant lineage of HPIV3 was C3f (86.0%), followed by lineage C3a (8.0%), C3d (4.0%), and C3b (2.0%). These findings help to better understand the epidemiology of HPIV, and improve public health strategies to prevent and control HPIV infections in southern China.

{"title":"Epidemiological and molecular characteristics of human parainfluenza virus in southern China during 2016-2020.","authors":"Yizhe Li, Minjie Liu, Jingyao Liang, Hengming Ye, Mingcui Lyu, Delin Chen, Linyue Liang, Shuqing Zhang, Kexin Zhang, Shu An, Wenle Zhou, Jueheng Wu, Xun Zhu, Zhenjian He","doi":"10.1016/j.virs.2025.03.004","DOIUrl":"https://doi.org/10.1016/j.virs.2025.03.004","url":null,"abstract":"<p><p>Human parainfluenza viruses (HPIV) are common viral pathogens in acute respiratory infection (ARI). We aimed to describe the epidemiological and molecular characteristics of HPIV from ARI patients. This cross-sectional study was conducted using respiratory samples from 9,696 ARI patients between 2016 and 2020 in southern China. All samples were analyzed by quantitative real-time polymerase chain reaction to determine the presence of HPIV and other common respiratory viruses. Descriptive statistics were performed to determine the temporal and population distribution of HPIV. The full-length hemagglutinin-neuraminidase (HN) gene of HPIV3-positive samples was sequenced for phylogenetic analysis. A total of 577 (6.0%) patients tested positive for HPIV, with HPIV3 being the predominant serotype, accounting for 46.8% of cases. Notably, 66.0% of these HPIV-positive cases were children aged 0-2 years. The prevalence of HPIV infections showed a decreased trend and altered peak during 2016-2020. Cough, fever, sputum production, and rhinorrhea were common respiratory symptoms in HPIV-positive patients. The majority of cases had pneumonia (63.4%). Human rhinovirus (HRV) and human coronavirus (HCoV) were the most common coinfection viruses in HPIV-positive cases, with proportions of 20.1% and 14.4%, respectively. Phylogenetic analysis revealed that the predominant lineage of HPIV3 was C3f (86.0%), followed by lineage C3a (8.0%), C3d (4.0%), and C3b (2.0%). These findings help to better understand the epidemiology of HPIV, and improve public health strategies to prevent and control HPIV infections in southern China.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Virologica Sinica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1