Communicating research findings as a return of value to All of Us Research Program participants: insights from staff at Federally Qualified Health Centers.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2024-08-22 DOI:10.1093/jamia/ocae207
Kathryn P Smith, Jenn Holmes, Jennifer Shelley
{"title":"Communicating research findings as a return of value to All of Us Research Program participants: insights from staff at Federally Qualified Health Centers.","authors":"Kathryn P Smith, Jenn Holmes, Jennifer Shelley","doi":"10.1093/jamia/ocae207","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Research participants value learning how their data contributions are advancing health research (ie, data stories). The All of Us Research Program gathered insights from program staff to learn what research topics they think are of interest to participants, what support staff need to communicate data stories, and how staff use data story dissemination tools.</p><p><strong>Materials and methods: </strong>Using an online 25-item assessment, we collected information from All of Us staff at 7 Federally Qualified Health Centers.</p><p><strong>Results: </strong>Topics of greatest interest or relevance included income insecurity (83%), diabetes (78%), and mental health (78%). Respondents prioritized in-person outreach in the community (70%) as a preferred setting to share data stories. Familiarity with available dissemination tools varied.</p><p><strong>Discussion: </strong>Responses support prioritizing materials for in-person outreach and training staff how to use dissemination tools.</p><p><strong>Conclusion: </strong>The findings will inform All of Us communication strategy, content, materials, and staff training resources to effectively deliver data stories as return of value to participants.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae207","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Research participants value learning how their data contributions are advancing health research (ie, data stories). The All of Us Research Program gathered insights from program staff to learn what research topics they think are of interest to participants, what support staff need to communicate data stories, and how staff use data story dissemination tools.

Materials and methods: Using an online 25-item assessment, we collected information from All of Us staff at 7 Federally Qualified Health Centers.

Results: Topics of greatest interest or relevance included income insecurity (83%), diabetes (78%), and mental health (78%). Respondents prioritized in-person outreach in the community (70%) as a preferred setting to share data stories. Familiarity with available dissemination tools varied.

Discussion: Responses support prioritizing materials for in-person outreach and training staff how to use dissemination tools.

Conclusion: The findings will inform All of Us communication strategy, content, materials, and staff training resources to effectively deliver data stories as return of value to participants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将研究成果作为对 "全民研究计划 "参与者的价值回报进行宣传:联邦合格卫生中心工作人员的见解。
目标:研究参与者重视了解他们的数据贡献是如何推动健康研究的(即数据故事)。我们所有人研究项目收集了项目员工的意见,以了解他们认为参与者感兴趣的研究课题、员工在传播数据故事时需要哪些支持,以及员工如何使用数据故事传播工具:我们使用 25 个项目的在线评估,向 7 个联邦合格医疗中心的 "我们所有人 "项目员工收集信息:最感兴趣或最相关的主题包括收入无保障(83%)、糖尿病(78%)和心理健康(78%)。受访者优先选择在社区(70%)进行面对面宣传,以分享数据故事。对现有传播工具的熟悉程度各不相同:讨论:受访者支持优先使用面对面宣传材料,并培训员工如何使用传播工具:结论:调查结果将为 "我们所有人 "的传播战略、内容、材料和员工培训资源提供参考,从而有效地传播数据故事,为参与者带来价值回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology. Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use. Research for all: building a diverse researcher community for the All of Us Research Program. Learning health system linchpins: information exchange and a common data model. Oncointerpreter.ai enables interactive, personalized summarization of cancer diagnostics data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1