Integrating species distribution and piecewise linear regression model to identify functional connectivity thresholds to delimit urban ecological corridors
{"title":"Integrating species distribution and piecewise linear regression model to identify functional connectivity thresholds to delimit urban ecological corridors","authors":"","doi":"10.1016/j.compenvurbsys.2024.102177","DOIUrl":null,"url":null,"abstract":"<div><p>Urban ecological corridors are essential for sustainable urban development, but determining their width remains challenging. This paper addresses this issue by focusing on the unique habitat requirements of urban undercanopy bird species. We employ Species Distribution Model to simulate their potential living spaces in Shanghai and quantify their functional connectivity in urban mobility. We then use segmented linear regression models to identify turning points in functional connectivity within different buffer zones, which represent the physical width of the corridor. Our findings show that urban undercanopy birds are less sensitive to human activity and building distribution compared to surface temperature, land cover types, and vegetation canopy height. We also find that conventional linear weighting methods tend to overestimate the impact of environmental factors on undercanopy birds, leading to subtle deviations in corridor path recognition. Finally, we demonstrate that employing segmented linear regression helps to quantify the turning points of functional connectivity for each urban ecological corridor, allowing us to determine their physical width range. This study is the first attempt to quantitatively assess the functional connectivity of urban ecological corridors from the perspective of undercanopy birds and demarcate their extent.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001066","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban ecological corridors are essential for sustainable urban development, but determining their width remains challenging. This paper addresses this issue by focusing on the unique habitat requirements of urban undercanopy bird species. We employ Species Distribution Model to simulate their potential living spaces in Shanghai and quantify their functional connectivity in urban mobility. We then use segmented linear regression models to identify turning points in functional connectivity within different buffer zones, which represent the physical width of the corridor. Our findings show that urban undercanopy birds are less sensitive to human activity and building distribution compared to surface temperature, land cover types, and vegetation canopy height. We also find that conventional linear weighting methods tend to overestimate the impact of environmental factors on undercanopy birds, leading to subtle deviations in corridor path recognition. Finally, we demonstrate that employing segmented linear regression helps to quantify the turning points of functional connectivity for each urban ecological corridor, allowing us to determine their physical width range. This study is the first attempt to quantitatively assess the functional connectivity of urban ecological corridors from the perspective of undercanopy birds and demarcate their extent.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.