Enhancing anti-diabetic activity and reducing cytotoxicity of T. crispa extracts through sustainable approach of pressurized hot water extraction and micelle-mediated separation
{"title":"Enhancing anti-diabetic activity and reducing cytotoxicity of T. crispa extracts through sustainable approach of pressurized hot water extraction and micelle-mediated separation","authors":"","doi":"10.1016/j.supflu.2024.106377","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, pressurized hot water extraction (PHWE) was evaluated for the recovery of anti-diabetic borapetoside C (BPC) from <em>T. crispa</em> stems. The maximum BPC extraction efficiency obtained at 100 ˚C, 2.5 MPa and 5.0 mL/min was considerably higher than that obtained by the conventional methods. Under optimized conditions, one-site kinetic desorption model could most accurately describe the PHWE behavior, suggesting an intra-particle diffusion-controlled mechanism. The undesirable compounds in the extract were further removed by micelle-mediated separation (MMS), in which Tween 80 was added, followed by NaCl addition and slight temperature increase to induce phase separation. At the most suitable MMS condition, with 0.028 mM Tween 80, 0.4 M NaCl, at 85 ˚C, the majority (87 %) of BPC could be recovered in the aqueous phase after 40 min. After MMS, the resulting extract exhibited low cytotoxicity against L6 and HepG2 cells while maintaining significant α-glucosidase and α-amylase inhibition activities.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, pressurized hot water extraction (PHWE) was evaluated for the recovery of anti-diabetic borapetoside C (BPC) from T. crispa stems. The maximum BPC extraction efficiency obtained at 100 ˚C, 2.5 MPa and 5.0 mL/min was considerably higher than that obtained by the conventional methods. Under optimized conditions, one-site kinetic desorption model could most accurately describe the PHWE behavior, suggesting an intra-particle diffusion-controlled mechanism. The undesirable compounds in the extract were further removed by micelle-mediated separation (MMS), in which Tween 80 was added, followed by NaCl addition and slight temperature increase to induce phase separation. At the most suitable MMS condition, with 0.028 mM Tween 80, 0.4 M NaCl, at 85 ˚C, the majority (87 %) of BPC could be recovered in the aqueous phase after 40 min. After MMS, the resulting extract exhibited low cytotoxicity against L6 and HepG2 cells while maintaining significant α-glucosidase and α-amylase inhibition activities.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.