Selena Cisana , Michele Di Nunzio , Valentina Brenzini , Monica Omedei , Fabrizio Seganti , Christina Ververi , Enrico Gerace , Alberto Salomone , Andrea Berti , Filippo Barni , Sergio Schiavone , Andrea Coppi , Ciro Di Nunzio , Paolo Garofano , Eugenio Alladio
{"title":"An initial exploration of machine learning for establishing associations between genetic markers and THC levels in Cannabis sativa samples","authors":"Selena Cisana , Michele Di Nunzio , Valentina Brenzini , Monica Omedei , Fabrizio Seganti , Christina Ververi , Enrico Gerace , Alberto Salomone , Andrea Berti , Filippo Barni , Sergio Schiavone , Andrea Coppi , Ciro Di Nunzio , Paolo Garofano , Eugenio Alladio","doi":"10.1016/j.fsigen.2024.103123","DOIUrl":null,"url":null,"abstract":"<div><p><em>Cannabis sativa</em>, a globally commercialized plant used for medicinal, food, fiber production, and recreation, necessitates effective identification to distinguish legal and illegal varieties in forensic contexts. This research utilizes multivariate statistical models and Machine Learning approaches to establish correlations between specific genotypes and tetrahydrocannabinol (Δ<sup>9</sup>-THC) content (%) in <em>C. sativa</em> samples. 132 cannabis leaves samples were obtained from legal growers in Piedmont, Italy, and illegal drug seizures in Turin. Samples were genetically profiled using a 13-loci STR multiplex and their Δ<sup>9</sup>-THC content was detected through quantitative GC-MS analysis. This study aims to assess the use of supervised classification modelling on genetic data to distinguish cannabis samples into legal and illegal categories, revealing distinct clusters characterized by unique allele profiles and THC content. t-distributed Stochastic Neighbor Embedding (t-SNE), Random Forest (RF) and Partial Least Squares Regression (PLS-R) were executed for the machine learning modelling. All the tested models resulted effective discriminating between legal samples and illegal. Although further validation is necessary, this study presents a novel forensic investigative approach, potentially aiding law enforcement in significant marijuana seizures or tracking illicit drug trafficking routes.</p></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"73 ","pages":"Article 103123"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324001194","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Cannabis sativa, a globally commercialized plant used for medicinal, food, fiber production, and recreation, necessitates effective identification to distinguish legal and illegal varieties in forensic contexts. This research utilizes multivariate statistical models and Machine Learning approaches to establish correlations between specific genotypes and tetrahydrocannabinol (Δ9-THC) content (%) in C. sativa samples. 132 cannabis leaves samples were obtained from legal growers in Piedmont, Italy, and illegal drug seizures in Turin. Samples were genetically profiled using a 13-loci STR multiplex and their Δ9-THC content was detected through quantitative GC-MS analysis. This study aims to assess the use of supervised classification modelling on genetic data to distinguish cannabis samples into legal and illegal categories, revealing distinct clusters characterized by unique allele profiles and THC content. t-distributed Stochastic Neighbor Embedding (t-SNE), Random Forest (RF) and Partial Least Squares Regression (PLS-R) were executed for the machine learning modelling. All the tested models resulted effective discriminating between legal samples and illegal. Although further validation is necessary, this study presents a novel forensic investigative approach, potentially aiding law enforcement in significant marijuana seizures or tracking illicit drug trafficking routes.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.