{"title":"Cellulose-based fluorescent chemosensor with controllable sensitivity for Fe3+ detection","authors":"","doi":"10.1016/j.carbpol.2024.122620","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer-based sensors, particularly those derived from renewable polymers, are gaining attention for their superior properties compared to organic small molecules. However, their complex preparation and poor, uncontrollable sensitivity have hindered further development. Herein, cellulose-based polymer photoluminescence (PL) chemosensors were fabricated using a straightforward and adjustable strategy. Specifically, water-soluble cellulose acetoacetate (CAA) was used as the substance for the in-situ synthesis of 1,4-dihydropyridine (DHPs) fluorescent rings on cellulose chains via a catalyst-free, room-temperature Hantzsch reaction. Benefiting from the synergetic through-space conjugation of DHPs rings and semi-rigid cellulose chains with heteroatoms, the sensors exhibit bright and stable PL properties. Based on this performance, the cellulose-based sensor excels in the specific recognition of Fe<sup>3+</sup> in aqueous systems, showing exceptional selectivity, stability, and anti-interference performance due to the synergy between the inner filter effect (IFE) and intramolecular charge transfer (ICT). Theoretical calculations confirm the role of the extended π-conjugated structure at the DHPs-4 position in modulating the sensor sensitivity, achieving a low limit of detection (LOD) of 0.48 μM. Furthermore, the versatility of the Hantzsch reaction shows the potential of this strategy for developing a new generation of biomass-based polymer portable sensors for real-time and on-site detection.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724008464","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer-based sensors, particularly those derived from renewable polymers, are gaining attention for their superior properties compared to organic small molecules. However, their complex preparation and poor, uncontrollable sensitivity have hindered further development. Herein, cellulose-based polymer photoluminescence (PL) chemosensors were fabricated using a straightforward and adjustable strategy. Specifically, water-soluble cellulose acetoacetate (CAA) was used as the substance for the in-situ synthesis of 1,4-dihydropyridine (DHPs) fluorescent rings on cellulose chains via a catalyst-free, room-temperature Hantzsch reaction. Benefiting from the synergetic through-space conjugation of DHPs rings and semi-rigid cellulose chains with heteroatoms, the sensors exhibit bright and stable PL properties. Based on this performance, the cellulose-based sensor excels in the specific recognition of Fe3+ in aqueous systems, showing exceptional selectivity, stability, and anti-interference performance due to the synergy between the inner filter effect (IFE) and intramolecular charge transfer (ICT). Theoretical calculations confirm the role of the extended π-conjugated structure at the DHPs-4 position in modulating the sensor sensitivity, achieving a low limit of detection (LOD) of 0.48 μM. Furthermore, the versatility of the Hantzsch reaction shows the potential of this strategy for developing a new generation of biomass-based polymer portable sensors for real-time and on-site detection.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.