NH2-MIL-125(Ti-Zr) synergized with WO3 to construct S-Scheme heterojunction photocatalysts for highly efficient degradation of organic dyes and tetracycline in water

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2024-08-15 DOI:10.1016/j.flatc.2024.100725
Xia Xu , Changchun Chen , Yisheng Shi , Sunyao Chen , Yifeng Wang , Lin Pan , Zishen Guan
{"title":"NH2-MIL-125(Ti-Zr) synergized with WO3 to construct S-Scheme heterojunction photocatalysts for highly efficient degradation of organic dyes and tetracycline in water","authors":"Xia Xu ,&nbsp;Changchun Chen ,&nbsp;Yisheng Shi ,&nbsp;Sunyao Chen ,&nbsp;Yifeng Wang ,&nbsp;Lin Pan ,&nbsp;Zishen Guan","doi":"10.1016/j.flatc.2024.100725","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid treatment of organic dyes and tetracycline (TC) in industrial wastewater requires highly efficient semiconductor photocatalysts. In this study, the S-Scheme NH<sub>2</sub>-MIL-125 (Ti-Zr)/ WO<sub>3</sub> composite material was successfully synthesized using a two-step hydrothermal method. A comprehensive analysis using X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HRTEM), and Field Emission Scanning Electron Microscopy (FESEM) images revealed that WO<sub>3</sub> nanoparticles are intimately anchored on the NH<sub>2</sub>-MIL-125 (Ti-Zr) nanodisks, forming a closely packed heterostructure. The bandgap values of WO<sub>3</sub> and NH<sub>2</sub>-MIL-125 (Ti-Zr) were determined to be 2.58 eV and 2.67 eV, respectively. Through Response Surface Methodology (RSM), the optimal photocatalytic conditions for the degradation of simulated pollutants in real aqueous environments by the synthesized photocatalysts were explored. Under the full-spectrum irradiation of a 300 W xenon lamp, the TZW-2 composite photocatalyst exhibited a degradation rate of RhB, MB, and TC solutions as high as 95.7 %, 96.7 %, and 93 % within 90 min, respectively. The excellent photocatalytic performance of the composite photocatalyst originates from the establishment of S-scheme heterojunctions between NH<sub>2</sub>-MIL-125 (Ti-Zr) and WO<sub>3</sub>, which was confirmed by various characterization techniques such as XPS valence spectra, photoelectrochemistry, and free radical trapping experiments. The excellent stability of the prepared composite photocatalyst was further validated through three cycling test experiments. This work presents new ideas for constructing novel S-Scheme photocatalysts by combining bimetallic cluster MOFs and metal oxides for wastewater treatment.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100725"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid treatment of organic dyes and tetracycline (TC) in industrial wastewater requires highly efficient semiconductor photocatalysts. In this study, the S-Scheme NH2-MIL-125 (Ti-Zr)/ WO3 composite material was successfully synthesized using a two-step hydrothermal method. A comprehensive analysis using X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HRTEM), and Field Emission Scanning Electron Microscopy (FESEM) images revealed that WO3 nanoparticles are intimately anchored on the NH2-MIL-125 (Ti-Zr) nanodisks, forming a closely packed heterostructure. The bandgap values of WO3 and NH2-MIL-125 (Ti-Zr) were determined to be 2.58 eV and 2.67 eV, respectively. Through Response Surface Methodology (RSM), the optimal photocatalytic conditions for the degradation of simulated pollutants in real aqueous environments by the synthesized photocatalysts were explored. Under the full-spectrum irradiation of a 300 W xenon lamp, the TZW-2 composite photocatalyst exhibited a degradation rate of RhB, MB, and TC solutions as high as 95.7 %, 96.7 %, and 93 % within 90 min, respectively. The excellent photocatalytic performance of the composite photocatalyst originates from the establishment of S-scheme heterojunctions between NH2-MIL-125 (Ti-Zr) and WO3, which was confirmed by various characterization techniques such as XPS valence spectra, photoelectrochemistry, and free radical trapping experiments. The excellent stability of the prepared composite photocatalyst was further validated through three cycling test experiments. This work presents new ideas for constructing novel S-Scheme photocatalysts by combining bimetallic cluster MOFs and metal oxides for wastewater treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NH2-MIL-125(Ti-Zr) 与 WO3 协同构建 S-Scheme 异质结光催化剂,用于高效降解水中的有机染料和四环素
快速处理工业废水中的有机染料和四环素(TC)需要高效的半导体光催化剂。本研究采用两步水热法成功合成了 S-Scheme NH2-MIL-125 (Ti-Zr)/WO3复合材料。利用 X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、高分辨率透射电子显微镜 (HRTEM) 和场发射扫描电子显微镜 (FESEM) 图像进行的综合分析表明,WO3 纳米粒子紧密锚定在 NH2-MIL-125 (Ti-Zr) 纳米盘上,形成了紧密堆积的异质结构。经测定,WO3 和 NH2-MIL-125 (Ti-Zr) 的带隙值分别为 2.58 eV 和 2.67 eV。通过响应面法(RSM),探索了合成光催化剂在实际水环境中降解模拟污染物的最佳光催化条件。在 300 W 氙灯的全光谱照射下,TZW-2 复合光催化剂在 90 分钟内对 RhB、MB 和 TC 溶液的降解率分别高达 95.7%、96.7% 和 93%。复合光催化剂优异的光催化性能源于 NH2-MIL-125 (Ti-Zr) 与 WO3 之间建立的 S 型异质结,这一点已通过 XPS 价能谱、光电化学和自由基捕获实验等多种表征技术得到证实。通过三次循环测试实验,进一步验证了所制备复合光催化剂的优异稳定性。这项研究提出了将双金属团簇 MOFs 和金属氧化物结合起来构建新型 S-Scheme 光催化剂用于废水处理的新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
In-situ grown hexagonal rod-like ZIF-L(Zn/Co) variant on reduced graphene oxide (rGO) for the enhanced electrochemical sensing of acetaminophen Review on multifunctional elastomeric composites-based sensing for monitoring of aquatic and terrestrial living species A high-performance boron nitride nanocomposite coating with enhanced anticorrosion and flame retardant properties for aerospace applications Porous N, P co-doping Ti3C2Tx MXene for high-performance capacitive deionization Surface functionalization of WS2 nanosheets with Poly(N-vinylcaprolactam) and vinylacetic acid for targeted drug release in prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1