Kas J. Houthuijs , Lara van Tetering , Jelle L. Schuurman , Christopher A. Wootton , Christoph R. Gebhardt , Mark E. Ridgeway , Giel Berden , Jonathan Martens , Jos Oomens
{"title":"A trapped ion mobility enabled Fourier transform ion cyclotron resonance mass spectrometer for infrared ion spectroscopy at FELIX","authors":"Kas J. Houthuijs , Lara van Tetering , Jelle L. Schuurman , Christopher A. Wootton , Christoph R. Gebhardt , Mark E. Ridgeway , Giel Berden , Jonathan Martens , Jos Oomens","doi":"10.1016/j.ijms.2024.117323","DOIUrl":null,"url":null,"abstract":"<div><p>We report the installation of a new infrared ion spectroscopy platform at the free-electron laser facility FELIX, based on a Bruker SolariX Fourier Transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a trapped ion mobility spectrometry (TIMS) stage. The instrument allows one to record infrared multiple-photon dissociation (IRMPD) spectra for mass and mobility selected ions, produced by a range of ion sources. We describe two strategies to achieve consistent overlap between the laser beam and the ion packet. Removing the original ECD cathode significantly enhanced the IR transmission and the overlap with the ion cloud, resulting in improved IRMPD yield per pulse. Enhancement of the photodissociation yield is observed when multiple pulses are used, as there is negligible collisional deactivation in the ultra-high vacuum trapping region of the ICR cell. We compare IRMPD spectra recorded on the new platform with IRMPD spectra of the same species recorded on one of our 3D-quadrupole ion trap platforms. We demonstrate the instrument’s performance using a sample containing a mixture of two trisaccharides. Mobility selection allows us to record individual IR spectra for the two isomeric species. This multi-modal platform, encompassing liquid chromatography, ion mobility spectrometry, ultra-high resolution (tandem) mass spectrometry, infrared ion spectroscopy (and soon also mass spectrometry imaging), is available to users at the FELIX facility.</p></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":"505 ","pages":"Article 117323"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1387380624001349/pdfft?md5=c297eaa19b97a2c5962dd6fa46ae8015&pid=1-s2.0-S1387380624001349-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624001349","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report the installation of a new infrared ion spectroscopy platform at the free-electron laser facility FELIX, based on a Bruker SolariX Fourier Transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a trapped ion mobility spectrometry (TIMS) stage. The instrument allows one to record infrared multiple-photon dissociation (IRMPD) spectra for mass and mobility selected ions, produced by a range of ion sources. We describe two strategies to achieve consistent overlap between the laser beam and the ion packet. Removing the original ECD cathode significantly enhanced the IR transmission and the overlap with the ion cloud, resulting in improved IRMPD yield per pulse. Enhancement of the photodissociation yield is observed when multiple pulses are used, as there is negligible collisional deactivation in the ultra-high vacuum trapping region of the ICR cell. We compare IRMPD spectra recorded on the new platform with IRMPD spectra of the same species recorded on one of our 3D-quadrupole ion trap platforms. We demonstrate the instrument’s performance using a sample containing a mixture of two trisaccharides. Mobility selection allows us to record individual IR spectra for the two isomeric species. This multi-modal platform, encompassing liquid chromatography, ion mobility spectrometry, ultra-high resolution (tandem) mass spectrometry, infrared ion spectroscopy (and soon also mass spectrometry imaging), is available to users at the FELIX facility.
期刊介绍:
The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics.
Papers, in which standard mass spectrometry techniques are used for analysis will not be considered.
IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.