Toni Simolin, Mehdi Attar, Sami Repo, Pertti Järventausta
{"title":"End-user engagement in EV charging control at commercial locations through a user-friendly approach","authors":"Toni Simolin, Mehdi Attar, Sami Repo, Pertti Järventausta","doi":"10.1049/gtd2.13234","DOIUrl":null,"url":null,"abstract":"<p>Controlled electric vehicle (EV) charging at commercial locations has been seen as the key solution to mitigate the negative effects of uncontrolled charging on the power grid. In the scientific literature, EV users’ willingness to participate in charging control has been analyzed, and various control algorithms have been studied. However, there is a gap regarding the best practices to encourage users to participate in charging control and the potential influences of the EV users’ decisions on charging site operator's profits. In this article, the EV users’ perspective on charging control is assessed to form a user-friendly charging control approach and compensation scheme for commercial charging locations. Then, simulations are carried out using real charging session data to analyze the potential influences of EV users’ decisions on charging site operator's profits. According to the results, the profits of the charging site operator are more heavily dependent on the number of customers than the optimality of the charging control. Hence, charging site operators should carefully consider the attractiveness of the implemented control strategy to maximize profits.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13234","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Controlled electric vehicle (EV) charging at commercial locations has been seen as the key solution to mitigate the negative effects of uncontrolled charging on the power grid. In the scientific literature, EV users’ willingness to participate in charging control has been analyzed, and various control algorithms have been studied. However, there is a gap regarding the best practices to encourage users to participate in charging control and the potential influences of the EV users’ decisions on charging site operator's profits. In this article, the EV users’ perspective on charging control is assessed to form a user-friendly charging control approach and compensation scheme for commercial charging locations. Then, simulations are carried out using real charging session data to analyze the potential influences of EV users’ decisions on charging site operator's profits. According to the results, the profits of the charging site operator are more heavily dependent on the number of customers than the optimality of the charging control. Hence, charging site operators should carefully consider the attractiveness of the implemented control strategy to maximize profits.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf