A Theoretical Review of Modern Robust Statistics

IF 7.4 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Annual Review of Statistics and Its Application Pub Date : 2024-08-21 DOI:10.1146/annurev-statistics-112723-034446
Po-Ling Loh
{"title":"A Theoretical Review of Modern Robust Statistics","authors":"Po-Ling Loh","doi":"10.1146/annurev-statistics-112723-034446","DOIUrl":null,"url":null,"abstract":"Robust statistics is a fairly mature field that dates back to the early 1960s, with many foundational concepts having been developed in the ensuing decades. However, the field has drawn a new surge of attention in the past decade, largely due to a desire to recast robust statistical principles in the context of high-dimensional statistics. In this article, we begin by reviewing some of the central ideas in classical robust statistics. We then discuss the need for new theory in high dimensions, using recent work in high-dimensional <jats:italic>M</jats:italic>-estimation as an illustrative example. Next, we highlight a variety of interesting recent topics that have drawn a flurry of research activity from both statisticians and theoretical computer scientists, demonstrating the need for further research in robust estimation that embraces new estimation and contamination settings, as well as a greater emphasis on computational tractability in high dimensions.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"15 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034446","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust statistics is a fairly mature field that dates back to the early 1960s, with many foundational concepts having been developed in the ensuing decades. However, the field has drawn a new surge of attention in the past decade, largely due to a desire to recast robust statistical principles in the context of high-dimensional statistics. In this article, we begin by reviewing some of the central ideas in classical robust statistics. We then discuss the need for new theory in high dimensions, using recent work in high-dimensional M-estimation as an illustrative example. Next, we highlight a variety of interesting recent topics that have drawn a flurry of research activity from both statisticians and theoretical computer scientists, demonstrating the need for further research in robust estimation that embraces new estimation and contamination settings, as well as a greater emphasis on computational tractability in high dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代稳健统计的理论回顾
稳健统计是一个相当成熟的领域,可追溯到 20 世纪 60 年代初,许多基础概念是在随后的几十年中发展起来的。然而,在过去的十年中,该领域吸引了新一轮的关注,这主要是由于人们希望在高维统计的背景下重塑稳健统计原理。在本文中,我们首先回顾了经典稳健统计的一些核心思想。然后,我们以最近在高维 M 估计方面的研究为例,讨论了在高维领域对新理论的需求。接下来,我们将重点介绍近期吸引了统计学家和理论计算机科学家的大量研究活动的各种有趣课题,这表明我们需要进一步研究稳健估计,包括新的估计和污染设置,以及更加重视高维度的计算可操作性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Statistics and Its Application
Annual Review of Statistics and Its Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
13.40
自引率
1.30%
发文量
29
期刊介绍: The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.
期刊最新文献
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models Models and Rating Systems for Head-to-Head Competition A Review of Reinforcement Learning in Financial Applications Joint Modeling of Longitudinal and Survival Data Infectious Disease Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1