{"title":"One-stage anammox and thiocyanate-driven autotrophic denitrification for simultaneous removal of thiocyanate and nitrogen: Pathway and mechanism","authors":"","doi":"10.1016/j.watres.2024.122268","DOIUrl":null,"url":null,"abstract":"<div><p>The coupled process of anammox and reduced-sulfur driven autotrophic denitrification can simultaneously remove nitrogen and sulfur from wastewater, while minimizing energy consumption and sludge production. However, the research on the coupled process for removing naturally toxic thiocyanate (SCN<sup>-</sup>) is limited. This work successfully established and operated a one-stage coupled system by co-cultivating mature anammox and SCN<sup>-</sup>-driven autotrophic denitrification sludge in a single reactor. In this one-stage coupled system, the average total nitrogen removal efficiency was 89.68±3.33 %, surpassing that of solo anammox (81.80±2.10 %) and SCN<sup>-</sup>-driven autotrophic denitrification (85.20±1.54 %). Moreover, the average removal efficiency of SCN<sup>-</sup> reached 99.50±3.64 %, exceeding that of solo SCN<sup>-</sup>-driven autotrophic denitrification (98.80±0.65 %). The results of the <sup>15</sup>N stable isotope tracer labeling experiment revealed the respective reaction rates of anammox and denitrification as 106.38±10.37 μmol/L/h and 69.07±8.07 μmol/L/h. By analyzing metagenomic sequencing data, <em>Thiobacillus_denitrificans</em> was identified as the primary contributor to SCN<sup>-</sup> degradation in this coupled system. Furthermore, based on the comprehensive analysis of nitrogen and sulfur metabolic pathways, as well as the genes associated with SCN<sup>-</sup> degradation, it can be inferred that the cyanate (CNO) pathway was responsible for SCN<sup>-</sup> degradation. This work provided a deeper insight into coupling anammox with SCN<sup>-</sup>-driven autotrophic denitrification in a one-stage coupled system, thereby contributing to the development of an effective approach for wastewater treatment involving both SCN<sup>-</sup> and nitrogen.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424011679","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The coupled process of anammox and reduced-sulfur driven autotrophic denitrification can simultaneously remove nitrogen and sulfur from wastewater, while minimizing energy consumption and sludge production. However, the research on the coupled process for removing naturally toxic thiocyanate (SCN-) is limited. This work successfully established and operated a one-stage coupled system by co-cultivating mature anammox and SCN--driven autotrophic denitrification sludge in a single reactor. In this one-stage coupled system, the average total nitrogen removal efficiency was 89.68±3.33 %, surpassing that of solo anammox (81.80±2.10 %) and SCN--driven autotrophic denitrification (85.20±1.54 %). Moreover, the average removal efficiency of SCN- reached 99.50±3.64 %, exceeding that of solo SCN--driven autotrophic denitrification (98.80±0.65 %). The results of the 15N stable isotope tracer labeling experiment revealed the respective reaction rates of anammox and denitrification as 106.38±10.37 μmol/L/h and 69.07±8.07 μmol/L/h. By analyzing metagenomic sequencing data, Thiobacillus_denitrificans was identified as the primary contributor to SCN- degradation in this coupled system. Furthermore, based on the comprehensive analysis of nitrogen and sulfur metabolic pathways, as well as the genes associated with SCN- degradation, it can be inferred that the cyanate (CNO) pathway was responsible for SCN- degradation. This work provided a deeper insight into coupling anammox with SCN--driven autotrophic denitrification in a one-stage coupled system, thereby contributing to the development of an effective approach for wastewater treatment involving both SCN- and nitrogen.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.