{"title":"Cerium-based halide perovskite derivatives: A promising alternative for lead-free narrowband UV photodetection","authors":"","doi":"10.1016/j.matt.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>Metal halide perovskites are promising for optoelectronic applications but face challenges like lead toxicity, poor stability, and low photoluminescence quantum yield (PLQY). Cs<sub>3</sub>CeBr<sub>6</sub>, a non-toxic rare-earth material, is a potential lead-free alternative. As the synthesis of Cs<sub>3</sub>CeBr<sub>6</sub> traditionally requires high temperatures, this study presents a low-temperature, eco-friendly, and cost-effective method for its formation. The material exhibits a narrow UV excitation range (280–370 nm) and emits violet light with an impressive PLQY of ∼89% and a photoluminescence (PL) decay time of 28.3 ns. Utilizing these properties, an efficient spectrum-selective visible-blind UV photodetector was developed, demonstrating exceptional responsivity (2.05 A/W) and high detectivity (10<sup>13</sup> Jones) at low bias voltage (1 V). The device shows long-term stability and energy efficiency. This study explores carrier transport and defect dynamics in thin films to enhance UV responsiveness, marking a significant advancement in low-power-consumption device technology.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259023852400403X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites are promising for optoelectronic applications but face challenges like lead toxicity, poor stability, and low photoluminescence quantum yield (PLQY). Cs3CeBr6, a non-toxic rare-earth material, is a potential lead-free alternative. As the synthesis of Cs3CeBr6 traditionally requires high temperatures, this study presents a low-temperature, eco-friendly, and cost-effective method for its formation. The material exhibits a narrow UV excitation range (280–370 nm) and emits violet light with an impressive PLQY of ∼89% and a photoluminescence (PL) decay time of 28.3 ns. Utilizing these properties, an efficient spectrum-selective visible-blind UV photodetector was developed, demonstrating exceptional responsivity (2.05 A/W) and high detectivity (1013 Jones) at low bias voltage (1 V). The device shows long-term stability and energy efficiency. This study explores carrier transport and defect dynamics in thin films to enhance UV responsiveness, marking a significant advancement in low-power-consumption device technology.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.