Continuous lithium extraction from brine by efficient redox-couple electrodialysis

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-11-06 DOI:10.1016/j.matt.2024.07.014
Rong Xu , Xin Xiao , Ge Zhang , Yusheng Ye , Pu Zhang , Yufei Yang , Sanzeeda Baig Shuchi , Yi Cui
{"title":"Continuous lithium extraction from brine by efficient redox-couple electrodialysis","authors":"Rong Xu ,&nbsp;Xin Xiao ,&nbsp;Ge Zhang ,&nbsp;Yusheng Ye ,&nbsp;Pu Zhang ,&nbsp;Yufei Yang ,&nbsp;Sanzeeda Baig Shuchi ,&nbsp;Yi Cui","doi":"10.1016/j.matt.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of lithium (Li)-ion batteries has catalyzed an unprecedented demand for Li. However, global Li supplies struggle to meet the ever-increasing demand because traditional Li mining processes are slow, expensive, and environmentally unsustainable. Here, we introduce an efficient redox-couple electrodialysis (RCE) approach for sustainable Li extraction from brine. The electrodialysis is driven by the same half-cell electrochemical reaction but operated in opposite directions—hydrogen evolution reaction and hydrogen oxidation reaction—which consumes minimal energy due to the zero-equilibrium full-cell voltage and the low overpotential. We demonstrate continuous Li extraction from brine for over 100 h, with a low operating voltage of 0.25 V, a faradaic efficiency of 88.87%, and a Li selectivity of 0.9954. Notably, the Li extraction via RCE consumes the specific energy of a mere 1.1 kWh kg<sub>Li</sub><sup>−1</sup>, an order of magnitude lower than the energy demands of previously reported Li extraction techniques.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3876-3890"},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004247","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of lithium (Li)-ion batteries has catalyzed an unprecedented demand for Li. However, global Li supplies struggle to meet the ever-increasing demand because traditional Li mining processes are slow, expensive, and environmentally unsustainable. Here, we introduce an efficient redox-couple electrodialysis (RCE) approach for sustainable Li extraction from brine. The electrodialysis is driven by the same half-cell electrochemical reaction but operated in opposite directions—hydrogen evolution reaction and hydrogen oxidation reaction—which consumes minimal energy due to the zero-equilibrium full-cell voltage and the low overpotential. We demonstrate continuous Li extraction from brine for over 100 h, with a low operating voltage of 0.25 V, a faradaic efficiency of 88.87%, and a Li selectivity of 0.9954. Notably, the Li extraction via RCE consumes the specific energy of a mere 1.1 kWh kgLi−1, an order of magnitude lower than the energy demands of previously reported Li extraction techniques.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高效氧化还原耦合电渗析从盐水中连续提取锂
锂(Li)离子电池的快速发展催化了对锂的空前需求。然而,由于传统的锂矿开采工艺缓慢、昂贵且对环境不可持续,全球锂供应难以满足日益增长的需求。在此,我们介绍一种高效的氧化还原耦合电渗析(RCE)方法,用于从盐水中可持续地提取锂。电渗析由相同的半电池电化学反应驱动,但以相反的方向运行--氢进化反应和氢氧化反应--由于零平衡全电池电压和低过电位,因此能耗极低。我们证明了从盐水中连续提取锂超过 100 小时,工作电压低至 0.25 V,远红外效率为 88.87%,锂选择性为 0.9954。值得注意的是,通过 RCE 提取锂消耗的比能量仅为 1.1 kWh kgLi-1,比之前报道的锂提取技术的能耗低一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1