{"title":"Designing carbon dots for enhanced photo-catalysis: Challenges and opportunities","authors":"","doi":"10.1016/j.chempr.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dots (CDs) are a fascinating class of nanomaterials with a straightforward design by means of an organic chemistry toolbox and an unsurmountable potential in the field of artificial photosynthesis. The vast structural diversity of CDs and the complex photo-physics thereof impose, however, significant challenges on their full utilization. Gathering a profound understanding of the structure-activity relationship and precise identification of the photo-catalytically active sites within CDs is crucial. This review summarizes the current understanding of photo-catalytically active CD-based systems. First, we analyze the structural complexity of CDs in the context of hydrogen photo-production, addressing the different roles of CDs in photo-catalytic hydrogen evolution as photosensitizers, co-catalysts, and catalysts. Second, we present the most important aspects to be considered for the design of CDs-based photo-catalysts, focusing on the fine-tuning of optical properties and charge management and discussing the timescales of events in the photo-excited state. Both experimental and theoretical methods relevant to studying structurally complex CDs are outlined. Finally, we share our thoughts on the future opportunities in CD-based photo-catalysis.</p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003619","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dots (CDs) are a fascinating class of nanomaterials with a straightforward design by means of an organic chemistry toolbox and an unsurmountable potential in the field of artificial photosynthesis. The vast structural diversity of CDs and the complex photo-physics thereof impose, however, significant challenges on their full utilization. Gathering a profound understanding of the structure-activity relationship and precise identification of the photo-catalytically active sites within CDs is crucial. This review summarizes the current understanding of photo-catalytically active CD-based systems. First, we analyze the structural complexity of CDs in the context of hydrogen photo-production, addressing the different roles of CDs in photo-catalytic hydrogen evolution as photosensitizers, co-catalysts, and catalysts. Second, we present the most important aspects to be considered for the design of CDs-based photo-catalysts, focusing on the fine-tuning of optical properties and charge management and discussing the timescales of events in the photo-excited state. Both experimental and theoretical methods relevant to studying structurally complex CDs are outlined. Finally, we share our thoughts on the future opportunities in CD-based photo-catalysis.
碳点(CD)是一类令人着迷的纳米材料,可通过有机化学工具箱进行直接设计,在人工光合作用领域具有难以逾越的潜力。然而,CD 的结构多样性及其复杂的光物理对其充分利用提出了巨大挑战。深刻理解结构与活性的关系并准确识别 CD 中的光催化活性位点至关重要。本综述总结了目前对光催化活性 CD 系统的理解。首先,我们分析了光催化制氢背景下 CD 结构的复杂性,探讨了 CD 作为光敏剂、助催化剂和催化剂在光催化氢进化中的不同作用。其次,我们介绍了设计基于 CD 的光催化剂时需要考虑的最重要方面,重点是光学特性和电荷管理的微调,并讨论了光激发态事件的时间尺度。我们还概述了与研究结构复杂的 CD 相关的实验和理论方法。最后,我们分享了我们对基于 CD 的光催化未来机遇的看法。
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.