Wenyan Kang , Ting Zou , Ye Liang , Huaxiang Lei , Rui Zhang , Jun Kang , Zhenquan Sun , Xuechen Li , Shaohua Ge , Chengfei Zhang
{"title":"An integrated preventive and therapeutic magnetic nanoparticle loaded with rhamnolipid and vancomycin for combating subgingival biofilms","authors":"Wenyan Kang , Ting Zou , Ye Liang , Huaxiang Lei , Rui Zhang , Jun Kang , Zhenquan Sun , Xuechen Li , Shaohua Ge , Chengfei Zhang","doi":"10.1016/j.dental.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Mechanical debridement supplemented with antibacterial agents effectively eradicates subgingival biofilms formed in the periodontal pockets of severe periodontitis patients. However, the available antimicrobial agents have limited penetrating ability to kill the bacteria encased in the deep layers of biofilms. This study aimed to fabricate a novel magnetic nanoparticle (MNP) loaded with rhamnolipid (RL) and vancomycin (Vanc, Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub>) to combat subgingival biofilms.</div></div><div><h3>Methods</h3><div>The multispecies subgingival biofilm was formed by periodontal pathogens, including <em>Streptococcus oralis</em> (<em>S. oralis</em>), <em>Streptococcus sanguinis</em> (<em>S. sanguinis</em>), <em>Actinomyces naeslundii</em> (<em>A. naeslundii</em>), <em>Porphyromonas gingivalis</em> (<em>P. gingivalis</em>) and <em>Fusobacterium nucleatum</em> (<em>F. nucleatum</em>). Scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the anti-biofilm efficacy of Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub> with or without a magnetic field on multispecies subgingival biofilms.</div></div><div><h3>Results</h3><div>The minimal inhibitory concentration (MIC) values of Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub> on <em>S. oralis</em>, <em>S. sanguinis</em>, <em>A. naeslundii</em>, <em>P. gingivalis</em>, and <em>F. nucleatum</em> were 25, 50, 100, 50, and 25 μg/mL, respectively. Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub> (200 μg/mL) reduced the 7-d biofilm thickness from 22 to 13 µm by degrading extracellular polymeric substance (EPS) and killing most bacteria except for tolerant <em>F. nucleatum</em>. A magnetic field enhanced the anti-biofilm effect of Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub> by facilitating its penetration into the bottom layers of biofilms and killing tolerant <em>F. nucleatum</em>.</div></div><div><h3>Significance</h3><div>Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub> MNPs can release RL, Vanc, and Ag and eradicate subgingival biofilms by disrupting EPS and killing bacteria. Vanc/RL-Ag@Fe<sub>3</sub>O<sub>4</sub> combined with a magnetic force is a promising approach for combating periodontal infection.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 11","pages":"Pages 1808-1822"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124002537","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Mechanical debridement supplemented with antibacterial agents effectively eradicates subgingival biofilms formed in the periodontal pockets of severe periodontitis patients. However, the available antimicrobial agents have limited penetrating ability to kill the bacteria encased in the deep layers of biofilms. This study aimed to fabricate a novel magnetic nanoparticle (MNP) loaded with rhamnolipid (RL) and vancomycin (Vanc, Vanc/RL-Ag@Fe3O4) to combat subgingival biofilms.
Methods
The multispecies subgingival biofilm was formed by periodontal pathogens, including Streptococcus oralis (S. oralis), Streptococcus sanguinis (S. sanguinis), Actinomyces naeslundii (A. naeslundii), Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). Scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the anti-biofilm efficacy of Vanc/RL-Ag@Fe3O4 with or without a magnetic field on multispecies subgingival biofilms.
Results
The minimal inhibitory concentration (MIC) values of Vanc/RL-Ag@Fe3O4 on S. oralis, S. sanguinis, A. naeslundii, P. gingivalis, and F. nucleatum were 25, 50, 100, 50, and 25 μg/mL, respectively. Vanc/RL-Ag@Fe3O4 (200 μg/mL) reduced the 7-d biofilm thickness from 22 to 13 µm by degrading extracellular polymeric substance (EPS) and killing most bacteria except for tolerant F. nucleatum. A magnetic field enhanced the anti-biofilm effect of Vanc/RL-Ag@Fe3O4 by facilitating its penetration into the bottom layers of biofilms and killing tolerant F. nucleatum.
Significance
Vanc/RL-Ag@Fe3O4 MNPs can release RL, Vanc, and Ag and eradicate subgingival biofilms by disrupting EPS and killing bacteria. Vanc/RL-Ag@Fe3O4 combined with a magnetic force is a promising approach for combating periodontal infection.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.