{"title":"Machine Learning-Based Sample Misidentification Error Detection in Clinical Laboratory Tests: A Retrospective Multicenter Study.","authors":"Hyeon Seok Seok, Shinae Yu, Kyung-Hwa Shin, Woochang Lee, Sail Chun, Sollip Kim, Hangsik Shin","doi":"10.1093/clinchem/hvae114","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In clinical laboratories, the precision and sensitivity of autoverification technologies are crucial for ensuring reliable diagnostics. Conventional methods have limited sensitivity and applicability, making error detection challenging and reducing laboratory efficiency. This study introduces a machine learning (ML)-based autoverification technology to enhance tumor marker test error detection.</p><p><strong>Methods: </strong>The effectiveness of various ML models was evaluated by analyzing a large data set of 397 751 for model training and internal validation and 215 339 for external validation. Sample misidentification was simulated by random shuffling error-free test results with a 1% error rate to achieve a real-world approximation. The ML models were developed with Bayesian optimization for tuning. Model validation was performed internally at the primary institution and externally at other institutions, comparing the ML models' performance with conventional delta check methods.</p><p><strong>Results: </strong>Deep neural networks and extreme gradient boosting achieved an area under the receiver operating characteristic curve of 0.834 to 0.903, outperforming that of conventional methods (0.705 to 0.816). External validation by 3 independent laboratories showed that the balanced accuracy of the ML model ranged from 0.760 to 0.836, outperforming the balanced accuracy of 0.670 to 0.773 of the conventional models.</p><p><strong>Conclusions: </strong>This study addresses limitations regarding the sensitivity of current delta check methods for detection of sample misidentification errors and provides versatile models that mitigate the operational challenges faced by smaller laboratories. Our findings offer a pathway toward more efficient and reliable clinical laboratory testing.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":" ","pages":"1256-1267"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In clinical laboratories, the precision and sensitivity of autoverification technologies are crucial for ensuring reliable diagnostics. Conventional methods have limited sensitivity and applicability, making error detection challenging and reducing laboratory efficiency. This study introduces a machine learning (ML)-based autoverification technology to enhance tumor marker test error detection.
Methods: The effectiveness of various ML models was evaluated by analyzing a large data set of 397 751 for model training and internal validation and 215 339 for external validation. Sample misidentification was simulated by random shuffling error-free test results with a 1% error rate to achieve a real-world approximation. The ML models were developed with Bayesian optimization for tuning. Model validation was performed internally at the primary institution and externally at other institutions, comparing the ML models' performance with conventional delta check methods.
Results: Deep neural networks and extreme gradient boosting achieved an area under the receiver operating characteristic curve of 0.834 to 0.903, outperforming that of conventional methods (0.705 to 0.816). External validation by 3 independent laboratories showed that the balanced accuracy of the ML model ranged from 0.760 to 0.836, outperforming the balanced accuracy of 0.670 to 0.773 of the conventional models.
Conclusions: This study addresses limitations regarding the sensitivity of current delta check methods for detection of sample misidentification errors and provides versatile models that mitigate the operational challenges faced by smaller laboratories. Our findings offer a pathway toward more efficient and reliable clinical laboratory testing.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.