Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR). While IPDA is more sensitive due to amplifying short fragments, it may overestimate intact fractions by relying only on quantification of 2 proviral regions. Q4PCR samples 4 proviral regions, yet is sequencing-based, favoring amplification of shorter, hence non-intact, proviral sequences.
Methods: Leveraging digital PCR (dPCR) advancements, we developed the "Rainbow" 5-plex proviral HIV-1 DNA assay. This first-in-its-kind assay was evaluated using standard materials and samples from 83 people living with HIV-1, enabling simultaneous quantification of both total and intact HIV-1 DNA levels. HIV proviral unique molecular identifier (UMI)-mediated long-read sequencing (HIV-PULSE) was used to validate the specificity of the Rainbow HIV-1 DNA assay.
Results: The Rainbow assay proved equally sensitive but more specific than IPDA and is not subjected to bias against full-length proviruses, enabling high-throughput quantification of total and intact reservoir size. The near full-length sequences allowed validation of the Rainbow specificity and the design of personalized Rainbow primer/probe sets, which enabled the detection of intact HIV-1 DNA.
Conclusions: This innovation offers potential for targeted evaluation and monitoring of potential rebound-competent reservoirs, contributing to HIV-1 management and cure strategies. ClinicalTrials.gov Registration Numbers: NCT04553081, NCT04305665.
Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting. In this review, we describe SV patterns of common cytogenetic abnormalities for laboratorians who review GS data.
Content: GS has the potential to detect diverse chromosomal abnormalities and sequence breakpoint junctions to clarify variant structure. No single GS analysis pipeline can detect all SV, and visualization of sequence data is crucial to recognize specific patterns. Here we describe genomic signatures of translocations, inverted duplications adjacent to terminal deletions, recombinant chromosomes, marker chromosomes, ring chromosomes, isodicentric and isochromosomes, and mosaic aneuploidy. Distinguishing these more complex abnormalities from simple deletions and duplications is critical for phenotypic interpretation and recurrence risk recommendations.
Summary: Unlike single-nucleotide variant calling, identification of chromosome rearrangements by GS requires further processing and multiple callers. SV databases have caveats and limitations depending on the platform (CMA vs sequencing) and resolution (exome vs genome). In the rapidly evolving era of clinical genomics, where a single test can identify both sequence and structural variants, optimal patient care stems from the integration of molecular and cytogenetic expertise.
Background: Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands.
Content: In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts.
Summary: There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.
Background: Newborn screening is a public health system designed to identify infants at risk for conditions early in life to facilitate timely intervention and treatment to prevent or mitigate adverse health outcomes. Newborn screening programs use tandem mass spectrometry as a platform to detect several treatable inborn errors of metabolism, and the T-cell receptor excision circle assay to detect some inborn errors of the immune system. Recent advancements in DNA sequencing have decreased the cost of sequencing and allow us to consider DNA sequencing as an additional platform to complement other newborn screening methods.
Content: This review provides an overview of DNA-based newborn screening, including its applications, opportunities, challenges, and future directions. We discuss the potential benefits of expanded DNA sequencing in newborn screening, such as expanding conditions screened and improved specificity and sensitivity of currently screened conditions. Additionally, we examine the ethical, legal, and social implications of implementing genomic sequencing in newborn screening programs, including issues related to consent, privacy, equity, data interpretation, scalability, and psychosocial impact on families. Additionally, we explore emerging strategies for addressing current limitations and advancing the field of newborn screening.
Summary: DNA sequencing in newborn screening has the potential to improve the diagnosis and management of rare diseases but also presents significant challenges that need to be addressed before implementation at the population level.