{"title":"Diagnostic accuracy of artificial intelligence models in detecting osteoporosis using dental images: a systematic review and meta-analysis.","authors":"Gita Khadivi, Abtin Akhtari, Farshad Sharifi, Nicolette Zargarian, Saharnaz Esmaeili, Mitra Ghazizadeh Ahsaie, Soheil Shahbazi","doi":"10.1007/s00198-024-07229-8","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aimed to systematically review the literature on the accuracy of artificial intelligence (AI) models for osteoporosis (OP) diagnosis using dental images. A thorough literature search was executed in October 2022 and updated in November 2023 across multiple databases, including PubMed, Scopus, Web of Science, and Google Scholar. The research targeted studies using AI models for OP diagnosis from dental radiographs. The main outcomes were the sensitivity and specificity of AI models regarding OP diagnosis. The \"meta\" package from the R Foundation was selected for statistical analysis. A random-effects model, along with 95% confidence intervals, was utilized to estimate pooled values. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was employed for risk of bias and applicability assessment. Among 640 records, 22 studies were included in the qualitative analysis and 12 in the meta-analysis. The overall sensitivity for AI-assisted OP diagnosis was 0.85 (95% CI, 0.70-0.93), while the pooled specificity equaled 0.95 (95% CI, 0.91-0.97). Conventional algorithms led to a pooled sensitivity of 0.82 (95% CI, 0.57-0.94) and a pooled specificity of 0.96 (95% CI, 0.93-0.97). Deep convolutional neural networks exhibited a pooled sensitivity of 0.87 (95% CI, 0.68-0.95) and a pooled specificity of 0.92 (95% CI, 0.83-0.96). This systematic review corroborates the accuracy of AI in OP diagnosis using dental images. Future research should expand sample sizes in test and training datasets and standardize imaging techniques to establish the reliability of AI-assisted methods in OP diagnosis through dental images.</p>","PeriodicalId":19638,"journal":{"name":"Osteoporosis International","volume":" ","pages":"1-19"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoporosis International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00198-024-07229-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The current study aimed to systematically review the literature on the accuracy of artificial intelligence (AI) models for osteoporosis (OP) diagnosis using dental images. A thorough literature search was executed in October 2022 and updated in November 2023 across multiple databases, including PubMed, Scopus, Web of Science, and Google Scholar. The research targeted studies using AI models for OP diagnosis from dental radiographs. The main outcomes were the sensitivity and specificity of AI models regarding OP diagnosis. The "meta" package from the R Foundation was selected for statistical analysis. A random-effects model, along with 95% confidence intervals, was utilized to estimate pooled values. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was employed for risk of bias and applicability assessment. Among 640 records, 22 studies were included in the qualitative analysis and 12 in the meta-analysis. The overall sensitivity for AI-assisted OP diagnosis was 0.85 (95% CI, 0.70-0.93), while the pooled specificity equaled 0.95 (95% CI, 0.91-0.97). Conventional algorithms led to a pooled sensitivity of 0.82 (95% CI, 0.57-0.94) and a pooled specificity of 0.96 (95% CI, 0.93-0.97). Deep convolutional neural networks exhibited a pooled sensitivity of 0.87 (95% CI, 0.68-0.95) and a pooled specificity of 0.92 (95% CI, 0.83-0.96). This systematic review corroborates the accuracy of AI in OP diagnosis using dental images. Future research should expand sample sizes in test and training datasets and standardize imaging techniques to establish the reliability of AI-assisted methods in OP diagnosis through dental images.
期刊介绍:
An international multi-disciplinary journal which is a joint initiative between the International Osteoporosis Foundation and the National Osteoporosis Foundation of the USA, Osteoporosis International provides a forum for the communication and exchange of current ideas concerning the diagnosis, prevention, treatment and management of osteoporosis and other metabolic bone diseases.
It publishes: original papers - reporting progress and results in all areas of osteoporosis and its related fields; review articles - reflecting the present state of knowledge in special areas of summarizing limited themes in which discussion has led to clearly defined conclusions; educational articles - giving information on the progress of a topic of particular interest; case reports - of uncommon or interesting presentations of the condition.
While focusing on clinical research, the Journal will also accept submissions on more basic aspects of research, where they are considered by the editors to be relevant to the human disease spectrum.