Adaptively multi-scale microstructure characterization of cancellous bone via Photoacoustic signal decomposition

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2024-07-31 DOI:10.1016/j.ultras.2024.107407
Ting Feng , Jieshu Li , Weiya Xie , Qian Cheng , Dean Ta
{"title":"Adaptively multi-scale microstructure characterization of cancellous bone via Photoacoustic signal decomposition","authors":"Ting Feng ,&nbsp;Jieshu Li ,&nbsp;Weiya Xie ,&nbsp;Qian Cheng ,&nbsp;Dean Ta","doi":"10.1016/j.ultras.2024.107407","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoporosis is a systemic disease with a high incidence in the elderly and seriously affects the quality of life of patients. Photoacoustic (PA) technology, which combines the advantages of light and ultrasound, can provide information about the physiological structure and chemical information of biological tissues in a non-invasive and non-radiative way. Due to the complex structural characteristics of bone tissue, PA signals generated by bone tissue are non-stationary and nonlinear. However, conventional PA signal processing methods are not effective for non-stationary signal processing. In this study, an empirical mode decomposition (EMD)-based Hilbert-Huang transform (HHT) PA signal analysis method, called HHT PA signal analysis (HPSA), was developed to assess the microstructure information of bone tissue, which is closely related to bone health. The feasibility of the HPSA method in bone health assessment was proven by numerical simulation and experimental studies on animal samples with different bone volume/total volume (BV/TV) and bone mineral densities. First, based on adaptive EMD, the different modes correlated with multi-scale information were mined from the PA signal, the correlations between different intrinsic mode function (IMF) modes and BV/TVs were analyzed, and the optimal mode for more efficient PA time–frequency analysis was selected. Second, multi-wavelength HPSA was used to assess the changes in the chemical components of the bone tissue. The results demonstrate that the HPSA method can distinguish bones with different BV/TVs and microstructure conditions adaptively with high efficiency. They further emphasize the potential of PA techniques in characterizing biological tissues in bones for early and rapid detection of bone diseases.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"144 ","pages":"Article 107407"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24001707","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis is a systemic disease with a high incidence in the elderly and seriously affects the quality of life of patients. Photoacoustic (PA) technology, which combines the advantages of light and ultrasound, can provide information about the physiological structure and chemical information of biological tissues in a non-invasive and non-radiative way. Due to the complex structural characteristics of bone tissue, PA signals generated by bone tissue are non-stationary and nonlinear. However, conventional PA signal processing methods are not effective for non-stationary signal processing. In this study, an empirical mode decomposition (EMD)-based Hilbert-Huang transform (HHT) PA signal analysis method, called HHT PA signal analysis (HPSA), was developed to assess the microstructure information of bone tissue, which is closely related to bone health. The feasibility of the HPSA method in bone health assessment was proven by numerical simulation and experimental studies on animal samples with different bone volume/total volume (BV/TV) and bone mineral densities. First, based on adaptive EMD, the different modes correlated with multi-scale information were mined from the PA signal, the correlations between different intrinsic mode function (IMF) modes and BV/TVs were analyzed, and the optimal mode for more efficient PA time–frequency analysis was selected. Second, multi-wavelength HPSA was used to assess the changes in the chemical components of the bone tissue. The results demonstrate that the HPSA method can distinguish bones with different BV/TVs and microstructure conditions adaptively with high efficiency. They further emphasize the potential of PA techniques in characterizing biological tissues in bones for early and rapid detection of bone diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过光声信号分解对松质骨进行自适应多尺度微结构表征。
骨质疏松症是一种全身性疾病,在老年人中发病率很高,严重影响患者的生活质量。光声(PA)技术结合了光和超声的优点,能以非侵入、非辐射的方式提供生物组织的生理结构和化学信息。由于骨组织复杂的结构特点,骨组织产生的 PA 信号是非稳态和非线性的。然而,传统的 PA 信号处理方法并不能有效地处理非稳态信号。本研究开发了一种基于经验模态分解(EMD)的希尔伯特-黄变换(HHT)PA 信号分析方法,称为 HHT PA 信号分析(HPSA),用于评估与骨骼健康密切相关的骨组织微观结构信息。通过对不同骨体积/总体积(BV/TV)和骨矿物质密度的动物样本进行数值模拟和实验研究,证明了 HPSA 方法在骨健康评估中的可行性。首先,基于自适应 EMD,从 PA 信号中挖掘出与多尺度信息相关的不同模式,分析了不同本征模函数(IMF)模式与 BV/TV 之间的相关性,并选择了最佳模式以进行更有效的 PA 时频分析。其次,利用多波长 HPSA 评估骨组织化学成分的变化。结果表明,HPSA 方法可以高效地自适应区分不同 BV/TV 和微结构条件的骨骼。这些结果进一步强调了 PA 技术在表征骨骼中的生物组织以早期快速检测骨骼疾病方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Twice reflected ultrasonic bulk wave for surface defect monitoring In-situ monitoring of µm-sized electrochemically generated corrosion pits using Lamb waves managed by a sparse array of piezoelectric transducers Development of signal processing algorithms for delamination detection in composite laminates using non-contact excited Lamb waves Near-surface defect detection in ultrasonic testing using domain-knowledge-informed self-supervised learning Influence of moisture on the diffusion of ultrasound in concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1