{"title":"HDAC6-mediated deacetylation of FLOT2 maintains stability and tumorigenic function of FLOT2 in nasopharyngeal carcinoma.","authors":"Chenhua Luo, Binbin Wen, Jie Liu, Wenlong Yang","doi":"10.11817/j.issn.1672-7347.2024.240077","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Flotillin-2 (FLOT2) is a prototypical oncogenic and a potential target for cancer therapy. However, strategies for targeting FLOT2 remain undefined. Post-translational modifications are crucial for regulating protein stability, function, and localization. Understanding the mechanisms and roles of post-translational modifications is key to developing targeted therapies. This study aims to investigate the regulation and function of lysine acetylation of FLOT2 in nasopharyngeal carcinoma, providing new insights for targeting FLOT2 in cancer intervention.</p><p><strong>Methods: </strong>The PhosphoSitePlus database was used to analyze the lysine acetylation sites of FLOT2, and a lysine acetylation site mutation of FLOT2 [FLOT2 (K211R)] was constructed. Nasopharyngeal carcinoma cells were treated with histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and Sirt family deacetylase inhibitor nicotinamide (NAM). TSA-treated human embryonic kidney (HEK)-293T were transfected with FLOT2 mutant plasmids. Co-immunoprecipitation (Co-IP) was used to detect total acetylation levels of FLOT2 and the effects of specific lysine (K) site mutations on FLOT2 acetylation. Western blotting was used to detect FLOT2/FLAG-FLOT2 protein expression in TSA-treated nasopharyngeal carcinoma cells transfected with FLOT mutant plasmids, and real-time reverse transcription PCR (real-time RT-PCR) was used to detect <i>FLOT2</i> mRNA expression. Nasopharyngeal carcinoma cells were treated with TSA combined with MG132 or chloroquine (CQ) to analyze FLOT2 protein expression. Cycloheximide (CHX) was used to treat HEK-293T cells transfected with FLAG-FLOT2 (WT) or FLAG-FLOT2(K211R) plasmids to assess protein degradation rates. The BioGrid database was used to identify potential interactions between FLOT2 and HDAC6, which were validated by Co-IP. HEK-293T cells were co-transfected with FLAG-FLOT2 (WT)/FLAG-FLOT2 (K211R) and Vector/HDAC6 plasmids, and grouped into FLAG-FLOT2 (WT)+Vector, FLAG-FLOT2 (WT)+HDAC6, FLAG-FLOT2 (K211R)+Vector, and FLAG-FLOT2 (K211R)+HDAC6 to analyze the impact of K211R mutation on total lysine acetylation levels. In 6-0B cells, overexpression of FLOT2 (WT) and FLOT2 (K211R) was performed, and the biological functions of FLOT2 acetylation site mutants were assessed using cell counting kit-8 (CCK-8), colony formation, and Transwell invasion assays.</p><p><strong>Results: </strong>The PhosphoSitePlus database indicated that FLOT2 has an acetylation modification at the K211 site. Co-IP confirmed significant acetylation of FLOT2, with TSA significantly increasing overall FLOT2 acetylation levels, while NAM had no effect. Mutation at the K211 site significantly reduced overall FLOT2 acetylation, unaffected by TSA. TSA decreased FLOT2 protein expression in nasopharyngeal carcinoma cells without affecting <i>FLOT2</i> mRNA levels or FLOT2 (K211R) protein expression in transfected cells. The degradation rate of FLOT2 (K211R) protein was significantly slower than that of FLOT2 (WT). The proteasome inhibitor MG132 prevented TSA-induced FLOT2 degradation, while the lysosome inhibitor CQ did not. BioGrid data suggested a potential interaction between FLOT2 and HDAC6, confirmed by Co-IP. Knockdown of <i>HDAC6</i> in nasopharyngeal carcinoma cells significantly increased FLOT2 acetylation; co-transfection of HDAC6 and FLAG-FLOT2 (WT) significantly decreased total lysine acetylation levels, whereas co-transfection of HDAC6 and FLAG-FLOT2 (K211R) had no effect. Knockdown of <i>HDAC6</i> significantly reduced FLOT2 protein levels without affecting mRNA levels. MG132 prevented <i>HDAC6</i>-knockdown-induced FLOT2 degradation. Knockdown of <i>HDAC6</i> significantly accelerated FLOT2 degradation. Nasopharyngeal carcinoma cells transfected with FLOT2 (K211R) showed significantly higher proliferation and invasion than those transfected with FLOT2 (WT).</p><p><strong>Conclusions: </strong>The K211 site of FLOT2 undergoes acetylation modification, and HDAC6 mediates deacetylation at this site, inhibiting proteasomal degradation of FLOT2 and maintaining its stability and tumor-promoting function in nasopharyngeal carcinoma.</p>","PeriodicalId":39801,"journal":{"name":"中南大学学报(医学版)","volume":"49 5","pages":"687-697"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中南大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11817/j.issn.1672-7347.2024.240077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Flotillin-2 (FLOT2) is a prototypical oncogenic and a potential target for cancer therapy. However, strategies for targeting FLOT2 remain undefined. Post-translational modifications are crucial for regulating protein stability, function, and localization. Understanding the mechanisms and roles of post-translational modifications is key to developing targeted therapies. This study aims to investigate the regulation and function of lysine acetylation of FLOT2 in nasopharyngeal carcinoma, providing new insights for targeting FLOT2 in cancer intervention.
Methods: The PhosphoSitePlus database was used to analyze the lysine acetylation sites of FLOT2, and a lysine acetylation site mutation of FLOT2 [FLOT2 (K211R)] was constructed. Nasopharyngeal carcinoma cells were treated with histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and Sirt family deacetylase inhibitor nicotinamide (NAM). TSA-treated human embryonic kidney (HEK)-293T were transfected with FLOT2 mutant plasmids. Co-immunoprecipitation (Co-IP) was used to detect total acetylation levels of FLOT2 and the effects of specific lysine (K) site mutations on FLOT2 acetylation. Western blotting was used to detect FLOT2/FLAG-FLOT2 protein expression in TSA-treated nasopharyngeal carcinoma cells transfected with FLOT mutant plasmids, and real-time reverse transcription PCR (real-time RT-PCR) was used to detect FLOT2 mRNA expression. Nasopharyngeal carcinoma cells were treated with TSA combined with MG132 or chloroquine (CQ) to analyze FLOT2 protein expression. Cycloheximide (CHX) was used to treat HEK-293T cells transfected with FLAG-FLOT2 (WT) or FLAG-FLOT2(K211R) plasmids to assess protein degradation rates. The BioGrid database was used to identify potential interactions between FLOT2 and HDAC6, which were validated by Co-IP. HEK-293T cells were co-transfected with FLAG-FLOT2 (WT)/FLAG-FLOT2 (K211R) and Vector/HDAC6 plasmids, and grouped into FLAG-FLOT2 (WT)+Vector, FLAG-FLOT2 (WT)+HDAC6, FLAG-FLOT2 (K211R)+Vector, and FLAG-FLOT2 (K211R)+HDAC6 to analyze the impact of K211R mutation on total lysine acetylation levels. In 6-0B cells, overexpression of FLOT2 (WT) and FLOT2 (K211R) was performed, and the biological functions of FLOT2 acetylation site mutants were assessed using cell counting kit-8 (CCK-8), colony formation, and Transwell invasion assays.
Results: The PhosphoSitePlus database indicated that FLOT2 has an acetylation modification at the K211 site. Co-IP confirmed significant acetylation of FLOT2, with TSA significantly increasing overall FLOT2 acetylation levels, while NAM had no effect. Mutation at the K211 site significantly reduced overall FLOT2 acetylation, unaffected by TSA. TSA decreased FLOT2 protein expression in nasopharyngeal carcinoma cells without affecting FLOT2 mRNA levels or FLOT2 (K211R) protein expression in transfected cells. The degradation rate of FLOT2 (K211R) protein was significantly slower than that of FLOT2 (WT). The proteasome inhibitor MG132 prevented TSA-induced FLOT2 degradation, while the lysosome inhibitor CQ did not. BioGrid data suggested a potential interaction between FLOT2 and HDAC6, confirmed by Co-IP. Knockdown of HDAC6 in nasopharyngeal carcinoma cells significantly increased FLOT2 acetylation; co-transfection of HDAC6 and FLAG-FLOT2 (WT) significantly decreased total lysine acetylation levels, whereas co-transfection of HDAC6 and FLAG-FLOT2 (K211R) had no effect. Knockdown of HDAC6 significantly reduced FLOT2 protein levels without affecting mRNA levels. MG132 prevented HDAC6-knockdown-induced FLOT2 degradation. Knockdown of HDAC6 significantly accelerated FLOT2 degradation. Nasopharyngeal carcinoma cells transfected with FLOT2 (K211R) showed significantly higher proliferation and invasion than those transfected with FLOT2 (WT).
Conclusions: The K211 site of FLOT2 undergoes acetylation modification, and HDAC6 mediates deacetylation at this site, inhibiting proteasomal degradation of FLOT2 and maintaining its stability and tumor-promoting function in nasopharyngeal carcinoma.
期刊介绍:
Journal of Central South University (Medical Sciences), founded in 1958, is a comprehensive academic journal of medicine and health sponsored by the Ministry of Education and Central South University. The journal has been included in many important databases and authoritative abstract journals at home and abroad, such as the American Medline, Pubmed and its Index Medicus (IM), the Netherlands Medical Abstracts (EM), the American Chemical Abstracts (CA), the WHO Western Pacific Region Medical Index (WPRIM), and the Chinese Science Citation Database (Core Database) (CSCD); it is a statistical source journal of Chinese scientific and technological papers, a Chinese core journal, and a "double-effect" journal of the Chinese Journal Matrix; it is the "2nd, 3rd, and 4th China University Excellent Science and Technology Journal", "2008 China Excellent Science and Technology Journal", "RCCSE China Authoritative Academic Journal (A+)" and Hunan Province's "Top Ten Science and Technology Journals". The purpose of the journal is to reflect the new achievements, new technologies, and new experiences in medical research, medical treatment, and teaching, report new medical trends at home and abroad, promote academic exchanges, improve academic standards, and promote scientific and technological progress.