Lingxiu Chen, Dehe Wang, Qingxu Sun, Junyuan Wu, Hongyu Sun, Yang Zhang, Liwei Shi
{"title":"Effect of hydrogen on graphene growth on SiC(0001) under atmospheric pressure","authors":"Lingxiu Chen, Dehe Wang, Qingxu Sun, Junyuan Wu, Hongyu Sun, Yang Zhang, Liwei Shi","doi":"10.1016/j.physe.2024.116088","DOIUrl":null,"url":null,"abstract":"<div><p>Epitaxial growth of graphene on silicon carbide (SiC) facilitates the direct application of graphene in the semiconductor field. During the graphene preparation process, hydrogen plays a crucial role in determining its morphology. Therefore, studying the influence of hydrogen on the graphene morphology on the SiC surface is of great significance. In this study, we present a direct epitaxial growth of graphene on the SiC(0001) surface under atmospheric pressure. Our focus extends beyond the growth process itself to investigate the important role of hydrogen in shaping the quality and morphology of both the substrate and the graphene. By showing the influence of hydrogen at various stages, our research aims to contribute insights that advance the seamless integration of graphene into the semiconductor field.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116088"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001929","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epitaxial growth of graphene on silicon carbide (SiC) facilitates the direct application of graphene in the semiconductor field. During the graphene preparation process, hydrogen plays a crucial role in determining its morphology. Therefore, studying the influence of hydrogen on the graphene morphology on the SiC surface is of great significance. In this study, we present a direct epitaxial growth of graphene on the SiC(0001) surface under atmospheric pressure. Our focus extends beyond the growth process itself to investigate the important role of hydrogen in shaping the quality and morphology of both the substrate and the graphene. By showing the influence of hydrogen at various stages, our research aims to contribute insights that advance the seamless integration of graphene into the semiconductor field.
石墨烯在碳化硅(SiC)上的外延生长促进了石墨烯在半导体领域的直接应用。在石墨烯的制备过程中,氢在决定其形态方面起着至关重要的作用。因此,研究氢气对 SiC 表面石墨烯形貌的影响具有重要意义。在本研究中,我们介绍了石墨烯在大气压力下在 SiC(0001) 表面直接外延生长的过程。我们的研究重点超越了生长过程本身,而是研究氢气在塑造基底和石墨烯的质量和形态方面的重要作用。通过展示氢气在不同阶段的影响,我们的研究旨在为推动石墨烯与半导体领域的无缝结合贡献自己的见解。
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures