In this paper a Metal-Insulator-Metal configuration based electro-optic microring resonator is designed and simulated by using Bismuth Ferrite and Germanium Antimony Telluride for wavelength filtering, switching and modulator applications. The device works on the phenomena of change in refractive index of the active materials when electric field is applied. Initially, switching and filtering is demonstrated by using bismuth ferrite as an active material inside the ring resonator. Later on, an additional layer of GST is added to the ring resonator resulting in increased light confinement inside the ring resonator in the amorphous state of GST layer. Due to this, resonant dips sharpens which improves the quality factor of the device up to 154. By optimizing the device's structural parameters, a modulation depth of 23.11 dB is achieved with a low loss of 1.6 dB. Additionally, these innovative SPPs plasmonic waveguide structures can accommodate various filtering requirements and have good filtering efficiency.