{"title":"Identification of O-arylated huperzinines as novel cholinergic anti-inflammatory pathway agonists against gout arthritis","authors":"","doi":"10.1016/j.bioorg.2024.107716","DOIUrl":null,"url":null,"abstract":"<div><p><em>Lycodine</em> alkaloids are important natural products with diverse biological effects. In this manuscript, we set out the first structural optimization of the 2-pyridone moiety of <em>Lycodine</em> alkaloid via selective <em>O</em>-arylation under metal-free conditions and obtained a series of potent bioactive molecules against monosodium urate (MSU)-induced IL-1β production. Further investigations demonstrated that these natural product derivatives could activate the neuro-immunomodulatory cholinergic anti-inflammatory pathway (CAP) to block the initial phase of NLRP3 inflammasome activation. Compared with the clinical drugs hydrocortisone and indomethacin, as well as commercially available CAP agonists GTS-21 and pnu282987, <strong>3</strong><strong>k</strong> and <strong>3q</strong> possessed greater potency against MSU-induced IL-1β production. Meanwhile, these molecules possessed less cytotoxicity against promonocytic THP-1 macrophages when compared with colchicine. This work reports a concise strategy for direct modification of 2-pyridone moiety from natural <em>Lycodine</em> alkaloids, and provides novel frameworks for discovering CAP activators and drugs for gout arthritis.</p></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824006217","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lycodine alkaloids are important natural products with diverse biological effects. In this manuscript, we set out the first structural optimization of the 2-pyridone moiety of Lycodine alkaloid via selective O-arylation under metal-free conditions and obtained a series of potent bioactive molecules against monosodium urate (MSU)-induced IL-1β production. Further investigations demonstrated that these natural product derivatives could activate the neuro-immunomodulatory cholinergic anti-inflammatory pathway (CAP) to block the initial phase of NLRP3 inflammasome activation. Compared with the clinical drugs hydrocortisone and indomethacin, as well as commercially available CAP agonists GTS-21 and pnu282987, 3k and 3q possessed greater potency against MSU-induced IL-1β production. Meanwhile, these molecules possessed less cytotoxicity against promonocytic THP-1 macrophages when compared with colchicine. This work reports a concise strategy for direct modification of 2-pyridone moiety from natural Lycodine alkaloids, and provides novel frameworks for discovering CAP activators and drugs for gout arthritis.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.