{"title":"An automated OpenMP mutation testing framework for performance optimization","authors":"Dolores Miao , Ignacio Laguna , Giorgis Georgakoudis , Konstantinos Parasyris , Cindy Rubio-González","doi":"10.1016/j.parco.2024.103097","DOIUrl":null,"url":null,"abstract":"<div><p>Performance optimization continues to be a challenge in modern HPC software. Existing performance optimization techniques, including profiling-based and auto-tuning techniques, fail to indicate program modifications at the source level thus preventing their portability across compilers. This paper describes <span>Muppet</span>, a new approach that identifies program modifications called <em>mutations</em> aimed at improving program performance. <span>Muppet</span>’s mutations help developers reason about performance defects and missed opportunities to improve performance at the source code level. In contrast to compiler techniques that optimize code at intermediate representations (IR), <span>Muppet</span> uses the idea of source-level <em>mutation testing</em> to relax correctness constraints and automatically discover optimization opportunities that otherwise are not feasible using the IR. We demonstrate the <span>Muppet</span>’s concept in the OpenMP programming model. <span>Muppet</span> generates a list of OpenMP mutations that alter the program parallelism in various ways, and is capable of running a variety of optimization algorithms such as delta debugging, Bayesian Optimization and decision tree optimization to find a subset of mutations which, when applied to the original program, cause the most speedup while maintaining program correctness. When <span>Muppet</span> is evaluated against a diverse set of benchmark programs and proxy applications, it is capable of finding sets of mutations that induce speedup in 75.9% of the evaluated programs.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"121 ","pages":"Article 103097"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167819124000358/pdfft?md5=139743a6196b36bc64bd1733300112aa&pid=1-s2.0-S0167819124000358-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000358","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Performance optimization continues to be a challenge in modern HPC software. Existing performance optimization techniques, including profiling-based and auto-tuning techniques, fail to indicate program modifications at the source level thus preventing their portability across compilers. This paper describes Muppet, a new approach that identifies program modifications called mutations aimed at improving program performance. Muppet’s mutations help developers reason about performance defects and missed opportunities to improve performance at the source code level. In contrast to compiler techniques that optimize code at intermediate representations (IR), Muppet uses the idea of source-level mutation testing to relax correctness constraints and automatically discover optimization opportunities that otherwise are not feasible using the IR. We demonstrate the Muppet’s concept in the OpenMP programming model. Muppet generates a list of OpenMP mutations that alter the program parallelism in various ways, and is capable of running a variety of optimization algorithms such as delta debugging, Bayesian Optimization and decision tree optimization to find a subset of mutations which, when applied to the original program, cause the most speedup while maintaining program correctness. When Muppet is evaluated against a diverse set of benchmark programs and proxy applications, it is capable of finding sets of mutations that induce speedup in 75.9% of the evaluated programs.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications