SiC/PtSe2 van der Waals heterostructure: A high-efficiency direct Z-scheme photocatalyst for overall water splitting predicted from first-principles study

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-08-12 DOI:10.1016/j.micrna.2024.207953
{"title":"SiC/PtSe2 van der Waals heterostructure: A high-efficiency direct Z-scheme photocatalyst for overall water splitting predicted from first-principles study","authors":"","doi":"10.1016/j.micrna.2024.207953","DOIUrl":null,"url":null,"abstract":"<div><p>The discovery of effective photocatalytic substances is crucial in reducing energy shortages and ecological contamination. This research involves creating SiC/PtSe<sub>2</sub> van der Waals heterostructure with both SiC and PtSe<sub>2</sub> monolayers, employing first-principles calculations for comprehensive theoretical analysis of their structural stability, electronic characteristics, optical features, Bader charge, and solar-to-hydrogen (STH) efficiency. Findings indicate that the SiC/PtSe<sub>2</sub> heterostructure is a semiconductor with an indirect bandgap of 1.52 eV and a direct Z-scheme charge transfer path, facilitating more efficient segregation of photogenerated electron-hole pairs. The Bader charge indicates that the SiC layer accumulates positive charges and the PtSe<sub>2</sub> layer accumulates negative charges, constituting a built-in electric field pointing from the SiC side to the PtSe<sub>2</sub> side at the interface region, which can impede the complexation of the photogenerated electron-hole pairs. Furthermore, the SiC/PtSe<sub>2</sub> heterostructure exhibits excellent optical absorption properties across both the ultraviolet and visible spectra, coupled with an exceptionally high STH efficiency of 34.7 %, significantly enhancing solar energy utilization. Ultimately, the Gibbs free energy calculations reveal the significant catalytic efficiency of the SiC/PtSe<sub>2</sub> heterostructure for redox reactions. Based on these results, the SiC/PtSe<sub>2</sub> heterostructure is a direct Z-scheme photocatalyst for overall water splitting.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of effective photocatalytic substances is crucial in reducing energy shortages and ecological contamination. This research involves creating SiC/PtSe2 van der Waals heterostructure with both SiC and PtSe2 monolayers, employing first-principles calculations for comprehensive theoretical analysis of their structural stability, electronic characteristics, optical features, Bader charge, and solar-to-hydrogen (STH) efficiency. Findings indicate that the SiC/PtSe2 heterostructure is a semiconductor with an indirect bandgap of 1.52 eV and a direct Z-scheme charge transfer path, facilitating more efficient segregation of photogenerated electron-hole pairs. The Bader charge indicates that the SiC layer accumulates positive charges and the PtSe2 layer accumulates negative charges, constituting a built-in electric field pointing from the SiC side to the PtSe2 side at the interface region, which can impede the complexation of the photogenerated electron-hole pairs. Furthermore, the SiC/PtSe2 heterostructure exhibits excellent optical absorption properties across both the ultraviolet and visible spectra, coupled with an exceptionally high STH efficiency of 34.7 %, significantly enhancing solar energy utilization. Ultimately, the Gibbs free energy calculations reveal the significant catalytic efficiency of the SiC/PtSe2 heterostructure for redox reactions. Based on these results, the SiC/PtSe2 heterostructure is a direct Z-scheme photocatalyst for overall water splitting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SiC/PtSe2范德华异质结构:第一原理研究预测的用于整体水分离的高效直接 Z 型光催化剂
发现有效的光催化物质对于减少能源短缺和生态污染至关重要。这项研究包括创建具有 SiC 和 PtSe2 单层的 SiC/PtSe2 范德华异质结构,并利用第一性原理计算对其结构稳定性、电子特性、光学特征、Bader 电荷和太阳能制氢(STH)效率进行全面的理论分析。研究结果表明,SiC/PtSe2 异质结构是一种具有 1.52 eV 间接带隙和直接 Z 型电荷转移路径的半导体,有利于光生电子-空穴对更有效地分离。Bader 电荷表明,SiC 层积累了正电荷,而 PtSe2 层积累了负电荷,在界面区构成了一个从 SiC 侧指向 PtSe2 侧的内置电场,这会阻碍光生电子-空穴对的复合。此外,SiC/PtSe2 异质结构在紫外和可见光谱范围内均表现出优异的光吸收特性,同时具有 34.7% 的超高 STH 效率,大大提高了太阳能的利用率。吉布斯自由能计算最终揭示了 SiC/PtSe2 异质结构在氧化还原反应中的显著催化效率。基于这些结果,SiC/PtSe2 异质结构是一种直接用于整体水分离的 Z 型光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Optical Interconnects for nano-scale VLSI applications Enhancing TFET performance through gate length optimization and doping control in phosphorene nanoribbons A novel nanoscale FD-SOI MOSFET with energy barrier and heat-sink engineering for enhanced electric field uniformity First principles study of the electronic structure and Li-ion diffusion properties of co-doped LIFex-1MxPyNy-1O4 (M=Co/Mn, NS/Si) Li-ion battery cathode materials Metamaterial structure design based on genetic algorithm and phase change material GST for multispectral camouflage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1