{"title":"Training feedforward neural networks with Bayesian hyper-heuristics","authors":"","doi":"10.1016/j.ins.2024.121363","DOIUrl":null,"url":null,"abstract":"<div><p>The process of training <em>feedforward neural networks</em> (FFNNs) can benefit from an automated process where the best heuristic to train the network is sought out automatically by means of a high-level probabilistic-based heuristic. This research introduces a novel population-based <em>Bayesian hyper-heuristic</em> (BHH) that is used to train <em>feedforward neural networks</em> (FFNNs). The performance of the BHH is compared to that of ten popular low-level heuristics, each with different search behaviours. The chosen heuristic pool consists of classic gradient-based heuristics as well as <em>meta-heuristics</em> (MHs). The empirical process is executed on fourteen datasets consisting of classification and regression problems with varying characteristics. The BHH is shown to be able to train FFNNs well and provide an automated method for finding the best heuristic to train the FFNNs at various stages of the training process.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020025524012775/pdfft?md5=1d463e50138859a6bcaad1358d8cf44d&pid=1-s2.0-S0020025524012775-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524012775","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The process of training feedforward neural networks (FFNNs) can benefit from an automated process where the best heuristic to train the network is sought out automatically by means of a high-level probabilistic-based heuristic. This research introduces a novel population-based Bayesian hyper-heuristic (BHH) that is used to train feedforward neural networks (FFNNs). The performance of the BHH is compared to that of ten popular low-level heuristics, each with different search behaviours. The chosen heuristic pool consists of classic gradient-based heuristics as well as meta-heuristics (MHs). The empirical process is executed on fourteen datasets consisting of classification and regression problems with varying characteristics. The BHH is shown to be able to train FFNNs well and provide an automated method for finding the best heuristic to train the FFNNs at various stages of the training process.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.