Lei Liang , Hao Yan , Aochi Jia , Haiyan Zhang , Menghao Li , Kaiyu Chai , Jiawei Xi , Shichang Li , Dingyi Feng
{"title":"A simple and cost-effective fabrication of CO2 sensor via electrospinning polyether sulfone nanofibers toward ultra-high detection sensitivity","authors":"Lei Liang , Hao Yan , Aochi Jia , Haiyan Zhang , Menghao Li , Kaiyu Chai , Jiawei Xi , Shichang Li , Dingyi Feng","doi":"10.1016/j.yofte.2024.103948","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate detection of carbon dioxide (CO<sub>2</sub>) is of great significance to environmental protection. In this study, a simple, highly sensitive, and linearity CO<sub>2</sub> sensors is successfully proposed. Furthermore, for the first time, the sensor was demonstrated by electrospinning a layer of polyether sulfone (PES) nanofiber film wrapped onto a micro-tapered long period fiber grating (MT-LPFG). Given that CO<sub>2</sub> molecules effortlessly permeate the mesh pores of the electrospun PES films, modulations in both the refractive index (RI) and volume of PES films can be induced, consequently leading to alterations in the resonant wavelength of the grating. The experimental results demonstrate the exceptional performance of the MT-LPFG sensor utilizing PES films, showcasing a significant response within a range of (1.99 %-10 %). This sensor exhibits a sensitivity of 0.068 nm/%, linearity of 0.994, and an impressively low CO<sub>2</sub> detection limit of 1.2 %. Moreover, the sensor exhibits exceptional recovery properties and demonstrates clear differentiation between nitrogen (N<sub>2</sub>) and CO<sub>2</sub>. This cost-effective sensor holds significant economic value and holds promise for widespread application in industrial processes and commercialization.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103948"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024002931","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate detection of carbon dioxide (CO2) is of great significance to environmental protection. In this study, a simple, highly sensitive, and linearity CO2 sensors is successfully proposed. Furthermore, for the first time, the sensor was demonstrated by electrospinning a layer of polyether sulfone (PES) nanofiber film wrapped onto a micro-tapered long period fiber grating (MT-LPFG). Given that CO2 molecules effortlessly permeate the mesh pores of the electrospun PES films, modulations in both the refractive index (RI) and volume of PES films can be induced, consequently leading to alterations in the resonant wavelength of the grating. The experimental results demonstrate the exceptional performance of the MT-LPFG sensor utilizing PES films, showcasing a significant response within a range of (1.99 %-10 %). This sensor exhibits a sensitivity of 0.068 nm/%, linearity of 0.994, and an impressively low CO2 detection limit of 1.2 %. Moreover, the sensor exhibits exceptional recovery properties and demonstrates clear differentiation between nitrogen (N2) and CO2. This cost-effective sensor holds significant economic value and holds promise for widespread application in industrial processes and commercialization.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.