Robust low-rank matrix completion via sparsity-inducing regularizer

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-08-21 DOI:10.1016/j.sigpro.2024.109666
Zhi-Yong Wang , Hing Cheung So , Abdelhak M. Zoubir
{"title":"Robust low-rank matrix completion via sparsity-inducing regularizer","authors":"Zhi-Yong Wang ,&nbsp;Hing Cheung So ,&nbsp;Abdelhak M. Zoubir","doi":"10.1016/j.sigpro.2024.109666","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a sparsity-inducing regularizer associated with the Welsch function. We theoretically show that the regularizer is quasiconvex and the corresponding Moreau envelope is convex. Moreover, the closed-form solution to its Moreau envelope, namely, the proximity operator, is derived. Unlike conventional nonconvex regularizers like the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> that generally needs iterations to obtain the corresponding proximity operator, the developed regularizer has a closed-form proximity operator. We utilize our regularizer to penalize the singular values as well as sparse outliers of the distorted data, and develop an efficient algorithm for robust matrix completion. Convergence of the suggested method is analyzed and we prove that any accumulation point is a stationary point. Finally, experimental results demonstrate that our algorithm is superior to the competing techniques in terms of restoration performance. MATALB codes are available at <span><span>https://github.com/bestzywang/RMC-NNSR</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"226 ","pages":"Article 109666"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016516842400286X/pdfft?md5=96294fb11be3816ce3a1c75d79c6d4a0&pid=1-s2.0-S016516842400286X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016516842400286X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a sparsity-inducing regularizer associated with the Welsch function. We theoretically show that the regularizer is quasiconvex and the corresponding Moreau envelope is convex. Moreover, the closed-form solution to its Moreau envelope, namely, the proximity operator, is derived. Unlike conventional nonconvex regularizers like the p-norm with 0<p<1 that generally needs iterations to obtain the corresponding proximity operator, the developed regularizer has a closed-form proximity operator. We utilize our regularizer to penalize the singular values as well as sparse outliers of the distorted data, and develop an efficient algorithm for robust matrix completion. Convergence of the suggested method is analyzed and we prove that any accumulation point is a stationary point. Finally, experimental results demonstrate that our algorithm is superior to the competing techniques in terms of restoration performance. MATALB codes are available at https://github.com/bestzywang/RMC-NNSR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过稀疏性诱导正则器实现稳健的低秩矩阵补全
本文提出了一种与韦尔施函数相关的稀疏性诱导正则化器。我们从理论上证明了该正则是准凸的,相应的莫劳包络也是凸的。此外,我们还推导出了莫罗包络的闭式解,即接近算子。与传统的非凸正则不同,如 0<p<1 的 ℓp-norm 通常需要迭代才能得到相应的接近算子,而所开发的正则具有闭式接近算子。我们利用正则对失真数据的奇异值和稀疏异常值进行惩罚,并开发了一种高效的鲁棒矩阵补全算法。我们分析了所建议方法的收敛性,并证明任何累积点都是静止点。最后,实验结果表明,我们的算法在还原性能方面优于其他竞争技术。MATALB 代码见 https://github.com/bestzywang/RMC-NNSR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1