Yamila G. Sánchez , MaríaA. Loubes , Luciana C. González , Marcela P. Tolaba
{"title":"Energy-size relationship and starch modification in planetary ball milling of quinoa","authors":"Yamila G. Sánchez , MaríaA. Loubes , Luciana C. González , Marcela P. Tolaba","doi":"10.1016/j.jcs.2024.104004","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of speed (250–450 rpm) and time (10–50 min) on milling energy (E), particle size distribution (PSD), crystallinity degree (CD), damaged starch (DS), microstructure, hydration and pasting properties of flours obtained in a planetary ball mill (PBM) were investigated. As increasing milling severity quinoa flours showed polydispersed PSD (peaks at 417, 40 and 2 μm) with a shift towards smaller size and greater dispersion (Span: 3.0–5.2) as well as particles with rounded edges and polished surfaces (SEM images). The relationship E − D50 were satisfactorily predicted by the Walker's equation. The hydration tests as function of temperature and milling conditions revealed a complex flour behavior due to differences in PSD, composition, and DS content. The increasing milling energy caused a decrease in peak viscosity (PV), trough viscosity (TV) and final viscosity (FV) of up to 36%, 29%, and 25%, respectively. Significant correlations between flour attributes were found (DS-CD, r = −0.83, p < 0.01; PV-D50, r = 0.92, p < 0.01; TV-D50, r = 0.94, p < 0.01; FV-D50, r = 0.90, p < 0.01) denoted the increase of starch degradation as milling severity rises. These results can be used to improve the manufacture and the selection criteria of quinoa flour with specific functional attributes.</p></div>","PeriodicalId":15285,"journal":{"name":"Journal of Cereal Science","volume":"119 ","pages":"Article 104004"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cereal Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0733521024001620","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of speed (250–450 rpm) and time (10–50 min) on milling energy (E), particle size distribution (PSD), crystallinity degree (CD), damaged starch (DS), microstructure, hydration and pasting properties of flours obtained in a planetary ball mill (PBM) were investigated. As increasing milling severity quinoa flours showed polydispersed PSD (peaks at 417, 40 and 2 μm) with a shift towards smaller size and greater dispersion (Span: 3.0–5.2) as well as particles with rounded edges and polished surfaces (SEM images). The relationship E − D50 were satisfactorily predicted by the Walker's equation. The hydration tests as function of temperature and milling conditions revealed a complex flour behavior due to differences in PSD, composition, and DS content. The increasing milling energy caused a decrease in peak viscosity (PV), trough viscosity (TV) and final viscosity (FV) of up to 36%, 29%, and 25%, respectively. Significant correlations between flour attributes were found (DS-CD, r = −0.83, p < 0.01; PV-D50, r = 0.92, p < 0.01; TV-D50, r = 0.94, p < 0.01; FV-D50, r = 0.90, p < 0.01) denoted the increase of starch degradation as milling severity rises. These results can be used to improve the manufacture and the selection criteria of quinoa flour with specific functional attributes.
期刊介绍:
The Journal of Cereal Science was established in 1983 to provide an International forum for the publication of original research papers of high standing covering all aspects of cereal science related to the functional and nutritional quality of cereal grains (true cereals - members of the Poaceae family and starchy pseudocereals - members of the Amaranthaceae, Chenopodiaceae and Polygonaceae families) and their products, in relation to the cereals used. The journal also publishes concise and critical review articles appraising the status and future directions of specific areas of cereal science and short communications that present news of important advances in research. The journal aims at topicality and at providing comprehensive coverage of progress in the field.