{"title":"Discrete-Time Estimation/Approximation-Avoidance Control With Prescribed Performance","authors":"Xiangwei Bu;Ruining Luo;Humin Lei","doi":"10.1109/JMASS.2024.3396519","DOIUrl":null,"url":null,"abstract":"We address the problem of tracking control for uncertain discrete-time systems with unknown and unavailable plant dynamics, aiming to achieve prescribed performance within a preset convergence time for tracking errors. Our proposed control protocol is independent of the knowledge of system dynamics or the utilization of approximators/estimators. Instead, we employ transformed errors to develop novel nonlinear functions for control feedback. Consequently, we establish a new estimation/approximation-free indirect stabilization framework that serves as a standard paradigm for discrete-time prescribed performance control synthesis. Finally, simulation results applied to the missile seeker stabilized platform demonstrate the effectiveness of our approach.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 3","pages":"175-181"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10518121/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We address the problem of tracking control for uncertain discrete-time systems with unknown and unavailable plant dynamics, aiming to achieve prescribed performance within a preset convergence time for tracking errors. Our proposed control protocol is independent of the knowledge of system dynamics or the utilization of approximators/estimators. Instead, we employ transformed errors to develop novel nonlinear functions for control feedback. Consequently, we establish a new estimation/approximation-free indirect stabilization framework that serves as a standard paradigm for discrete-time prescribed performance control synthesis. Finally, simulation results applied to the missile seeker stabilized platform demonstrate the effectiveness of our approach.