Above Ground Level Estimation for Radar Altimetry Using Proximal Hamiltonian Monte Carlo

Muxin Guo;Bo Huang;Lei Yang;Ge Jiang
{"title":"Above Ground Level Estimation for Radar Altimetry Using Proximal Hamiltonian Monte Carlo","authors":"Muxin Guo;Bo Huang;Lei Yang;Ge Jiang","doi":"10.1109/JMASS.2023.3347443","DOIUrl":null,"url":null,"abstract":"The parameter estimation of conventional radar altimetry waveform often suffers from overfitting due to the high dimensionality on a succession of echoes. To this end, a novel proximal Hamiltonian Monte Carlo (PHMC) algorithm is proposed in this article to estimate the altitude in a statistical manner. More specifically, the Laplace distribution is used to encode the nonsmoothness in the estimation of the elevation parameter of the detection area. However, as the nonconjugation between the sparse prior and Gaussian-likelihood function, the hierarchical Bayesian strategy is employed for the closed-form posterior solution. To overcome the difficulty of fully Bayesian inference on high-dimensional posterior, the PHMC is utilized. Specifically, in order to obtain an available gradient of the nondifferentiable potential energy, the proximal operator is adopted to provide the subgradient to estimate parameters. Both the results using simulation and practical data demonstrate the superiority of the proposed PHMC over other conventional algorithms.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 3","pages":"128-137"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10374219/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The parameter estimation of conventional radar altimetry waveform often suffers from overfitting due to the high dimensionality on a succession of echoes. To this end, a novel proximal Hamiltonian Monte Carlo (PHMC) algorithm is proposed in this article to estimate the altitude in a statistical manner. More specifically, the Laplace distribution is used to encode the nonsmoothness in the estimation of the elevation parameter of the detection area. However, as the nonconjugation between the sparse prior and Gaussian-likelihood function, the hierarchical Bayesian strategy is employed for the closed-form posterior solution. To overcome the difficulty of fully Bayesian inference on high-dimensional posterior, the PHMC is utilized. Specifically, in order to obtain an available gradient of the nondifferentiable potential energy, the proximal operator is adopted to provide the subgradient to estimate parameters. Both the results using simulation and practical data demonstrate the superiority of the proposed PHMC over other conventional algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近端哈密尔顿蒙特卡洛法估算雷达测高的地面高度
由于连续回波的维度较高,传统雷达测高波形的参数估计往往存在过拟合问题。为此,本文提出了一种新颖的近似汉密尔顿蒙特卡洛(PHMC)算法,以统计方式估计高度。更具体地说,在估计检测区域的海拔参数时,使用拉普拉斯分布来编码非平滑性。然而,由于稀疏先验函数和高斯似然函数之间的非共轭关系,本文采用了分层贝叶斯策略来求解闭式后验。为了克服对高维后验进行完全贝叶斯推理的困难,采用了 PHMC。具体来说,为了获得无差势能的可用梯度,采用了近算子来提供估计参数的子梯度。模拟结果和实际数据都证明了所提出的 PHMC 优于其他传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1