High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-04-01 DOI:10.1109/JERM.2024.3378573
A. De Cillis;C. Merla;G. Monti;L. Tarricone;M. Zappatore
{"title":"High-Frequency Irreversible Electroporation: Optimum Parameter Prediction via Machine-Learning","authors":"A. De Cillis;C. Merla;G. Monti;L. Tarricone;M. Zappatore","doi":"10.1109/JERM.2024.3378573","DOIUrl":null,"url":null,"abstract":"The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"220-228"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10486922/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The adoption of high-frequency irreversible electroporation in various medical treatments is becoming increasingly prevalent. There is currently a special focus on its applications in oncology, offering new perspectives in terms of treatable tumor types and treatment effectiveness. A multitude of parameters can influence the efficiency and effectiveness of high-frequency irreversible electroporation procedures, with the selection of suitable electrodes and possible prediction of ablated area as interesting examples. In this paper, we demonstrate that machine-learning strategies, specifically neural networks, provide an appropriate approach for optimizing the choice of some electrode characteristics, and predicting the ablation area, this being quite useful in high-frequency electroporation applications in oncology. This possibility, in turn, may lead to superior results in high-frequency irreversible electroporation, and to a significant reduction of the time required for achieving them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频不可逆电穿孔:通过机器学习进行最佳参数预测
在各种医学治疗中采用高频不可逆电穿孔技术正变得越来越普遍。目前,高频不可逆电穿孔在肿瘤学中的应用受到特别关注,这为可治疗的肿瘤类型和治疗效果提供了新的视角。许多参数都会影响高频不可逆电穿孔手术的效率和效果,选择合适的电极和预测消融面积就是有趣的例子。在本文中,我们展示了机器学习策略,特别是神经网络,为优化选择某些电极特性和预测消融面积提供了一种合适的方法,这在肿瘤学的高频电穿孔应用中非常有用。反过来,这种可能性可能会导致高频不可逆电穿孔取得更好的效果,并显著缩短实现这些效果所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1