Barlev R. Nagawkar, Alberto Passalacqua, Shankar Subramaniam
{"title":"A study on the scale dependence of mixing indices for Eulerian multiphase models","authors":"Barlev R. Nagawkar, Alberto Passalacqua, Shankar Subramaniam","doi":"10.1002/aic.18589","DOIUrl":null,"url":null,"abstract":"<p>Mixing can vary based on the scale at which the system is observed, and a mixing index that can capture the features at different length scales is desirable. In this article, we analyze the scale dependence of the mixing indices developed for Eulerian multiphase models. Relevant length scales are distinguished by filtering solid fraction fields. The scale-dependence study is first done on manufactured fields of solid fraction to assess the performance of the mixing indices. The study is extended to a two-dimensional CFD simulation of the segregation of a bidisperse gas–solid mixture. The local mixing index performs well in capturing the spatial variation of mixing at different scales. The scale dependence of two global mixing indices is considered in the study, where the state of mixing is defined based on statistical measures. We demonstrate that the choice of measures influences the sensitivity of mixing indices to mixing at different scales.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aic.18589","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18589","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mixing can vary based on the scale at which the system is observed, and a mixing index that can capture the features at different length scales is desirable. In this article, we analyze the scale dependence of the mixing indices developed for Eulerian multiphase models. Relevant length scales are distinguished by filtering solid fraction fields. The scale-dependence study is first done on manufactured fields of solid fraction to assess the performance of the mixing indices. The study is extended to a two-dimensional CFD simulation of the segregation of a bidisperse gas–solid mixture. The local mixing index performs well in capturing the spatial variation of mixing at different scales. The scale dependence of two global mixing indices is considered in the study, where the state of mixing is defined based on statistical measures. We demonstrate that the choice of measures influences the sensitivity of mixing indices to mixing at different scales.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.