Difference in soil microbial necromass carbon accumulation induced by three crops straw mulching for 4 years in a citrus orchard

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-08-23 DOI:10.1007/s00374-024-01859-0
Xiaomin Liang, Yilin Chen, Xiaojuan Wang, Qiling Tan, Songwei Wu, Chengxiao Hu
{"title":"Difference in soil microbial necromass carbon accumulation induced by three crops straw mulching for 4 years in a citrus orchard","authors":"Xiaomin Liang, Yilin Chen, Xiaojuan Wang, Qiling Tan, Songwei Wu, Chengxiao Hu","doi":"10.1007/s00374-024-01859-0","DOIUrl":null,"url":null,"abstract":"<p>Soil microbial necromass carbon (C) is a crucial component of the soil organic C pool. The impact of both straw mulching treatments and years on the soil microbial necromass C accumulation remains unclear. We investigated factors driving soil microbial necromass C accumulation and its role in improving yield by analyzing the dynamic response of microbial necromass C, total organic C (TOC) and available nutrients, genes encoding carbohydrate-degrading enzymes and fruit yield of citrus under different straw types of mulching (wheat, rice, oilseed rape, no mulch) from 2019 to 2022. Annual rainfall was the main factor affecting the soil bacterial necromass C (BNC) accumulation. Straw mulching treatments were the main factor affecting the soil fungal necromass C (FNC) accumulation. Increased annual rainfall and high soil moisture levels hindered the soil microbial necromass C accumulation, especially BNC. No correlation was found between BNC and the relative abundance of genes encoding peptidoglycan (bacteria-derived biomass) degrading enzymes. Decreased relative abundance of genes encoding chitin (fungal-derived biomass) degrading enzymes, particularly GH18, favored the accumulation of FNC. <i>Actinomycetes</i> were the most significant contributors of the GH18 gene among microbial phyla. Moreover, oilseed rape and rice mulching treatments reduced the relative abundance of genes encoding enzymes degrading chitin. Microbial necromass C, especially BNC, was key for sustaining TOC, supplying nutrients, and enhancing citrus fruit yield. Our results provide new information for optimizing straw mulch type and application time in citrus orchards to improve soil microbial necromass accumulation.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01859-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microbial necromass carbon (C) is a crucial component of the soil organic C pool. The impact of both straw mulching treatments and years on the soil microbial necromass C accumulation remains unclear. We investigated factors driving soil microbial necromass C accumulation and its role in improving yield by analyzing the dynamic response of microbial necromass C, total organic C (TOC) and available nutrients, genes encoding carbohydrate-degrading enzymes and fruit yield of citrus under different straw types of mulching (wheat, rice, oilseed rape, no mulch) from 2019 to 2022. Annual rainfall was the main factor affecting the soil bacterial necromass C (BNC) accumulation. Straw mulching treatments were the main factor affecting the soil fungal necromass C (FNC) accumulation. Increased annual rainfall and high soil moisture levels hindered the soil microbial necromass C accumulation, especially BNC. No correlation was found between BNC and the relative abundance of genes encoding peptidoglycan (bacteria-derived biomass) degrading enzymes. Decreased relative abundance of genes encoding chitin (fungal-derived biomass) degrading enzymes, particularly GH18, favored the accumulation of FNC. Actinomycetes were the most significant contributors of the GH18 gene among microbial phyla. Moreover, oilseed rape and rice mulching treatments reduced the relative abundance of genes encoding enzymes degrading chitin. Microbial necromass C, especially BNC, was key for sustaining TOC, supplying nutrients, and enhancing citrus fruit yield. Our results provide new information for optimizing straw mulch type and application time in citrus orchards to improve soil microbial necromass accumulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柑橘园中三种作物秸秆覆盖 4 年诱导的土壤微生物坏死碳积累差异
土壤微生物坏死碳(C)是土壤有机碳库的重要组成部分。秸秆覆盖处理和年份对土壤微生物坏质碳积累的影响仍不清楚。我们通过分析2019年至2022年不同秸秆覆盖类型(小麦、水稻、油菜、无覆盖)下柑橘的微生物坏死碳、总有机碳(TOC)和可用养分、编码碳水化合物降解酶的基因以及果实产量的动态响应,研究了驱动土壤微生物坏死碳积累的因素及其在提高产量方面的作用。年降雨量是影响土壤细菌坏死物质 C(BNC)积累的主要因素。秸秆覆盖处理是影响土壤真菌坏死物质 C(FNC)积累的主要因素。年降雨量增加和土壤水分含量高阻碍了土壤微生物坏死物质 C 的积累,尤其是 BNC。BNC 与肽聚糖(细菌衍生生物质)降解酶编码基因的相对丰度之间没有相关性。几丁质(真菌生物质)降解酶编码基因(尤其是 GH18)相对丰度的降低有利于 FNC 的积累。在微生物门类中,放线菌是 GH18 基因最重要的贡献者。此外,油菜和水稻覆盖处理降低了甲壳素降解酶基因的相对丰度。微生物坏死物 C,尤其是 BNC,是维持总有机碳、提供养分和提高柑橘果实产量的关键。我们的研究结果为优化柑橘园秸秆覆盖物的类型和施用时间提供了新的信息,以改善土壤微生物坏死物质的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring Pre-sowing recurrent inoculation with Pseudomonas fluorescens promotes maize growth Interactive effects of plant litter chemistry and organic/inorganic forms of nitrogen addition on Moso bamboo (Phyllostachys edulis) soil respiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1