RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding

IF 20.6 1区 医学 Q1 MICROBIOLOGY Cell host & microbe Pub Date : 2024-08-23 DOI:10.1016/j.chom.2024.07.024
Elena Mitsi, Elissavet Nikolaou, Andre Goncalves, Annie Blizard, Helen Hill, Madlen Farrar, Angela Hyder-Wright, Oluwasefunmi Akeju, Josh Hamilton, Ashleigh Howard, Filora Elterish, Carla Solorzano, Ryan Robinson, Jesus Reiné, Andrea M. Collins, Stephen B. Gordon, Richard E. Moxon, Jeffrey N. Weiser, Debby Bogaert, Daniela M. Ferreira
{"title":"RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding","authors":"Elena Mitsi, Elissavet Nikolaou, Andre Goncalves, Annie Blizard, Helen Hill, Madlen Farrar, Angela Hyder-Wright, Oluwasefunmi Akeju, Josh Hamilton, Ashleigh Howard, Filora Elterish, Carla Solorzano, Ryan Robinson, Jesus Reiné, Andrea M. Collins, Stephen B. Gordon, Richard E. Moxon, Jeffrey N. Weiser, Debby Bogaert, Daniela M. Ferreira","doi":"10.1016/j.chom.2024.07.024","DOIUrl":null,"url":null,"abstract":"<p>Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.</p>","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.07.024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RSV 和鼻病毒会增加肺炎球菌的携带量和密度,而鼻腔炎症则与细菌脱落有关
流行病学研究报告了肺炎球菌和呼吸道病毒共同感染对发病率和预后的影响,但对它们对肺炎球菌携带和细菌量的影响却很少描述。在此,我们对 581 名健康成年人进行了鼻内肺炎球菌挑战前上呼吸道病毒感染筛查,通过将自然病毒感染与受控人类肺炎球菌感染相结合来评估这种影响。在所有成年人中,呼吸道合胞病毒(RSV)和鼻病毒无症状感染会大幅增加肺炎球菌的继发感染。RSV 对挑战后 9 天内的肺炎球菌密度也有重大影响。我们还研究了通过鼻腔和口腔途径脱落细菌的比率和动力学。与咳嗽脱落相比,高水平的肺炎球菌定植密度和鼻腔炎症与鼻腔脱落几率的增加密切相关。预防呼吸道病毒感染和控制肺炎球菌密度可能有助于预防肺炎球菌疾病和减少细菌传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell host & microbe
Cell host & microbe 生物-微生物学
CiteScore
45.10
自引率
1.70%
发文量
201
审稿时长
4-8 weeks
期刊介绍: Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.
期刊最新文献
If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes Beta-carbolines suppress vaginal inflammation Bacterial small RNA makes a big impact for gut colonization Microbial alchemists unlock honeybee cognition A small microcin plays a big role in V. cholerae interbacterial competition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1