Li-Ling Peng , Hui Lin , Guo-Feng Fan , Hsin-Pou Huang , Wei-Chiang Hong
{"title":"Runoff prediction based on the IGWOLSTM model: Achieving accurate flood forecasting and emergency management","authors":"Li-Ling Peng , Hui Lin , Guo-Feng Fan , Hsin-Pou Huang , Wei-Chiang Hong","doi":"10.1016/j.jher.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>With the acceleration of global climate change and urbanization, the frequency and impact of flood disasters are increasing year by year, making flood emergency management increasingly crucial for safeguarding people’s lives, property, and societal stability. To enhance the accuracy of river flow prediction, this study employs an Improved Gray Wolf Optimization Algorithm (IGWO) to optimize parameters of the Long Short-Term Memory Network (LSTM) model. Experimental results demonstrate that the proposed algorithm significantly improves the accuracy of river flow prediction, achieving higher precision and better generalization compared to traditional machine learning algorithms. This method provides more reliable data support for flood warning systems, aiding in the accurate prediction of flood occurrence timing and intensity, thereby providing scientific basis for flood prevention and mitigation efforts. Moreover, this approach supports hydro-logical research, enhancing understanding of river water cycle processes and ecosystem changes.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"56 ","pages":"Pages 28-39"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157064432400042X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
With the acceleration of global climate change and urbanization, the frequency and impact of flood disasters are increasing year by year, making flood emergency management increasingly crucial for safeguarding people’s lives, property, and societal stability. To enhance the accuracy of river flow prediction, this study employs an Improved Gray Wolf Optimization Algorithm (IGWO) to optimize parameters of the Long Short-Term Memory Network (LSTM) model. Experimental results demonstrate that the proposed algorithm significantly improves the accuracy of river flow prediction, achieving higher precision and better generalization compared to traditional machine learning algorithms. This method provides more reliable data support for flood warning systems, aiding in the accurate prediction of flood occurrence timing and intensity, thereby providing scientific basis for flood prevention and mitigation efforts. Moreover, this approach supports hydro-logical research, enhancing understanding of river water cycle processes and ecosystem changes.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.