Forward modeling of single-sided magnetic resonance and evaluation of T2 fitting error based on geometric analytical method

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-08-22 DOI:10.1016/j.cageo.2024.105705
Ruixin Miao, Yunzhi Wang, Qingyue Wang, Yan Zheng, Xiyu He, Chunpeng Ren, Chuandong Jiang
{"title":"Forward modeling of single-sided magnetic resonance and evaluation of T2 fitting error based on geometric analytical method","authors":"Ruixin Miao,&nbsp;Yunzhi Wang,&nbsp;Qingyue Wang,&nbsp;Yan Zheng,&nbsp;Xiyu He,&nbsp;Chunpeng Ren,&nbsp;Chuandong Jiang","doi":"10.1016/j.cageo.2024.105705","DOIUrl":null,"url":null,"abstract":"<div><p>Single-sided magnetic resonance (SSMR) offers advantages of portability and noninvasive measurement for water detection, with significant potential applications in groundwater exploration, petroleum well logging, and soil moisture monitoring. However, the inherent highly inhomogeneous static magnetic field and radiofrequency (RF) field in SSMR necessitate the utilization of the Carr–Purcell–Meiboom–Gill (CPMG) sequence measurement scheme. To accelerate forward modeling during pulse excitation, we introduce a Geometric Analysis Method (GAM) and assess <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> error using its primary parameters. The GAM involves applying spatial geometric rotations on the magnetization vector, leading to an analytical solution to the Bloch equation that disregards relaxation effects. Compared with the rotation matrix (RM) method, the GAM demonstrates high accuracy and reduces computational time by approximately 20.9%. By analyzing the primary parameters governing the magnetization vector in the analytical formula, we evaluated their impact on the transverse relaxation time (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) obtained through fitting the SE signal. Ultimately, the forward modeling results of the CPMG sequence within the region of interest (ROI) of a single-sided Halbach magnet array are validated. The <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> fitting error increases as the primary parameters deviate from the ideal values, highlighting their significant role in the <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> fitting results. This study provides a theoretical foundation for optimizing the design of SSMR magnets and RF coils.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"192 ","pages":"Article 105705"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001882","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-sided magnetic resonance (SSMR) offers advantages of portability and noninvasive measurement for water detection, with significant potential applications in groundwater exploration, petroleum well logging, and soil moisture monitoring. However, the inherent highly inhomogeneous static magnetic field and radiofrequency (RF) field in SSMR necessitate the utilization of the Carr–Purcell–Meiboom–Gill (CPMG) sequence measurement scheme. To accelerate forward modeling during pulse excitation, we introduce a Geometric Analysis Method (GAM) and assess T2 error using its primary parameters. The GAM involves applying spatial geometric rotations on the magnetization vector, leading to an analytical solution to the Bloch equation that disregards relaxation effects. Compared with the rotation matrix (RM) method, the GAM demonstrates high accuracy and reduces computational time by approximately 20.9%. By analyzing the primary parameters governing the magnetization vector in the analytical formula, we evaluated their impact on the transverse relaxation time (T2) obtained through fitting the SE signal. Ultimately, the forward modeling results of the CPMG sequence within the region of interest (ROI) of a single-sided Halbach magnet array are validated. The T2 fitting error increases as the primary parameters deviate from the ideal values, highlighting their significant role in the T2 fitting results. This study provides a theoretical foundation for optimizing the design of SSMR magnets and RF coils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何分析法的单侧磁共振前向建模和 T2 拟合误差评估
单面磁共振(SSMR)在水探测方面具有便携性和无创测量的优势,在地下水勘探、石油测井和土壤湿度监测方面具有巨大的潜在应用价值。然而,由于 SSMR 固有的高度不均匀静态磁场和射频(RF)场,因此必须使用卡尔-普塞尔-梅博姆-吉尔(CPMG)序列测量方案。为了加速脉冲激励期间的正向建模,我们引入了几何分析方法(GAM),并利用其主要参数评估 T2 误差。GAM 包括对磁化矢量进行空间几何旋转,从而得出布洛赫方程的解析解,并忽略弛豫效应。与旋转矩阵(RM)方法相比,GAM 显示出很高的准确性,并将计算时间减少了约 20.9%。通过分析解析公式中支配磁化矢量的主要参数,我们评估了它们对通过拟合 SE 信号获得的横向弛豫时间 (T2) 的影响。最终,验证了单面哈尔巴赫磁体阵列感兴趣区(ROI)内 CPMG 序列的正向建模结果。T2 拟合误差随着主要参数偏离理想值而增加,突出了它们在 T2 拟合结果中的重要作用。这项研究为优化 SSMR 磁体和射频线圈的设计提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1