Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-11-07 DOI:10.1016/j.cageo.2024.105768
Bahman Abbassi, Li-Zhen Cheng
{"title":"Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding","authors":"Bahman Abbassi,&nbsp;Li-Zhen Cheng","doi":"10.1016/j.cageo.2024.105768","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding deformation networks, visible as curvilinear lineaments in images, is crucial for geoscientific explorations. However, traditional manual extraction of lineaments is expertise-dependent, time-consuming, and labor-intensive. This study introduces an automated method to extract and identify geological faults from aeromagnetic images, integrating Bayesian Hyperparameter Optimization (BHO), Principal Component Wavelet Analysis (PCWA), and Hysteresis Thresholding Algorithm (HTA). The continuous wavelet transform (CWT), employed across various scales and orientations, enhances feature extraction quality, while Principal Component Analysis (PCA) within the CWT eliminates redundant information, focusing on relevant features. Using a Gaussian Process surrogate model, BHO autonomously fine-tunes hyperparameters for optimal curvilinear pattern recognition, resulting in a highly accurate and computationally efficient solution for curvilinear lineament mapping. Empirical validation using aeromagnetic images from a prominent fault zone in the James Bay region of Quebec, Canada, demonstrates significant accuracy improvements, with 23% improvement in <em>F</em><sub><em>β</em></sub> Score over the unoptimized PCWA-HTA and a marked 300% improvement over traditional HTA methods, underscoring the added value of fusing BHO with PCWA in the curvilinear lineament extraction process. The iterative nature of BHO progressively refines hyperparameters, enhancing geological feature detection. Early BHO iterations broadly explore the hyperparameter space, identifying low-frequency curvilinear features representing deep lineaments. As BHO advances, hyperparameter fine-tuning increases sensitivity to high-frequency features indicative of shallow lineaments. This progressive refinement ensures that later iterations better detect detailed structures, demonstrating BHO's robustness in distinguishing various curvilinear features and improving the accuracy of curvilinear lineament extraction. For future work, we aim to expand the method's applicability by incorporating multiple geophysical image types, enhancing adaptability across diverse geological contexts.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"194 ","pages":"Article 105768"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002516","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding deformation networks, visible as curvilinear lineaments in images, is crucial for geoscientific explorations. However, traditional manual extraction of lineaments is expertise-dependent, time-consuming, and labor-intensive. This study introduces an automated method to extract and identify geological faults from aeromagnetic images, integrating Bayesian Hyperparameter Optimization (BHO), Principal Component Wavelet Analysis (PCWA), and Hysteresis Thresholding Algorithm (HTA). The continuous wavelet transform (CWT), employed across various scales and orientations, enhances feature extraction quality, while Principal Component Analysis (PCA) within the CWT eliminates redundant information, focusing on relevant features. Using a Gaussian Process surrogate model, BHO autonomously fine-tunes hyperparameters for optimal curvilinear pattern recognition, resulting in a highly accurate and computationally efficient solution for curvilinear lineament mapping. Empirical validation using aeromagnetic images from a prominent fault zone in the James Bay region of Quebec, Canada, demonstrates significant accuracy improvements, with 23% improvement in Fβ Score over the unoptimized PCWA-HTA and a marked 300% improvement over traditional HTA methods, underscoring the added value of fusing BHO with PCWA in the curvilinear lineament extraction process. The iterative nature of BHO progressively refines hyperparameters, enhancing geological feature detection. Early BHO iterations broadly explore the hyperparameter space, identifying low-frequency curvilinear features representing deep lineaments. As BHO advances, hyperparameter fine-tuning increases sensitivity to high-frequency features indicative of shallow lineaments. This progressive refinement ensures that later iterations better detect detailed structures, demonstrating BHO's robustness in distinguishing various curvilinear features and improving the accuracy of curvilinear lineament extraction. For future work, we aim to expand the method's applicability by incorporating multiple geophysical image types, enhancing adaptability across diverse geological contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
曲线线性提取:贝叶斯优化主成分小波分析和滞后阈值法
了解变形网络(在图像中表现为曲线线状)对于地球科学勘探至关重要。然而,传统的人工提取线状物的方法依赖于专业知识,耗时耗力。本研究结合贝叶斯超参数优化(BHO)、主成分小波分析(PCWA)和磁滞阈值算法(HTA),介绍了一种从航空磁场图像中提取和识别地质断层的自动化方法。在不同尺度和方向上使用的连续小波变换 (CWT) 可提高特征提取质量,而 CWT 中的主成分分析 (PCA) 则可消除冗余信息,集中处理相关特征。利用高斯过程代理模型,BHO 可自主微调超参数,以实现最佳的曲线模式识别,从而为曲线线状图绘制提供高精度和计算效率的解决方案。利用加拿大魁北克詹姆斯湾地区一个突出断层带的航空磁场图像进行的经验验证表明,该方法的精确度有了显著提高,与未优化的 PCWA-HTA 相比,Fβ 得分提高了 23%,与传统 HTA 方法相比,Fβ 得分明显提高了 300%,这突出表明了在曲线线状提取过程中融合 BHO 与 PCWA 的附加价值。BHO 的迭代特性可逐步完善超参数,增强地质特征检测。早期的 BHO 迭代可广泛探索超参数空间,识别代表深层线状的低频曲线特征。随着 BHO 的发展,超参数微调提高了对指示浅层线状的高频特征的灵敏度。这种逐步完善的过程确保了以后的迭代能更好地检测到细节结构,证明了 BHO 在区分各种曲线特征方面的鲁棒性,并提高了曲线线状提取的准确性。在未来的工作中,我们希望通过结合多种地球物理图像类型来扩展该方法的适用性,从而增强其在不同地质环境下的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1