Multi-task metric learning for optical performance monitoring

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical Fiber Technology Pub Date : 2024-08-22 DOI:10.1016/j.yofte.2024.103927
Qinghui Zeng , Ye Lu , Zhiqiang Liu , Yu Zhang , Haiwen Li
{"title":"Multi-task metric learning for optical performance monitoring","authors":"Qinghui Zeng ,&nbsp;Ye Lu ,&nbsp;Zhiqiang Liu ,&nbsp;Yu Zhang ,&nbsp;Haiwen Li","doi":"10.1016/j.yofte.2024.103927","DOIUrl":null,"url":null,"abstract":"<div><p>In our experiments, applying few shot metric learning for optical performance monitoring (OPM), we set the dataset as 16-way-6-shot. Modulation format identification (MFI) was utilized as a classification task, and optical signal-to-noise ratio (OSNR) estimation was used as a regression task for joint analysis. Multi-task metric learning (MML) used the adaptive weights to balance the weights of the three metric functions, six modulation formats (QPSK, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM) are classified correctly with 100 % accuracy after 200 epochs. Furthermore, the lowest mean square error (MSE) of OSNR is 0.431 dB. Then, Ablation experiments compute the corresponding similarity (SIM) for each metric function show that the MSE of MML, SIM<sub>Local+Cosine</sub>, SIM<sub>Cosine+Point</sub>, SIM<sub>Local+Point</sub>, single-task metric learning (SML) and adaptive multi-task learning (AMTL) is 0.431 dB, 0.572 dB, 0.569 dB, 0.567 dB, 0.637 dB, 1.319 dB, respectively. The proposed model achieves the highest accuracy in MFI and the lowest MSE in OSNR estimation. Finally, when comparing the various metric functions while altering the transmission distance of the optical fiber, it was observed that MML stayed within an acceptable range between 200 km and 800 km. This shows that our algorithm requires only a small number of training samples to create a reasonably good model, offering a new approach to solving problems that arise in optical performance monitoring.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103927"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024002724","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In our experiments, applying few shot metric learning for optical performance monitoring (OPM), we set the dataset as 16-way-6-shot. Modulation format identification (MFI) was utilized as a classification task, and optical signal-to-noise ratio (OSNR) estimation was used as a regression task for joint analysis. Multi-task metric learning (MML) used the adaptive weights to balance the weights of the three metric functions, six modulation formats (QPSK, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM) are classified correctly with 100 % accuracy after 200 epochs. Furthermore, the lowest mean square error (MSE) of OSNR is 0.431 dB. Then, Ablation experiments compute the corresponding similarity (SIM) for each metric function show that the MSE of MML, SIMLocal+Cosine, SIMCosine+Point, SIMLocal+Point, single-task metric learning (SML) and adaptive multi-task learning (AMTL) is 0.431 dB, 0.572 dB, 0.569 dB, 0.567 dB, 0.637 dB, 1.319 dB, respectively. The proposed model achieves the highest accuracy in MFI and the lowest MSE in OSNR estimation. Finally, when comparing the various metric functions while altering the transmission distance of the optical fiber, it was observed that MML stayed within an acceptable range between 200 km and 800 km. This shows that our algorithm requires only a small number of training samples to create a reasonably good model, offering a new approach to solving problems that arise in optical performance monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光学性能监测的多任务度量学习
在我们的实验中,我们将少数几个镜头的度量学习应用于光学性能监测(OPM),并将数据集设置为 16 路-6 个镜头。调制格式识别(MFI)被用作分类任务,光信噪比(OSNR)估计被用作联合分析的回归任务。多任务度量学习(MML)使用自适应权重来平衡三个度量函数的权重,经过 200 次历时后,六种调制格式(QPSK、8QAM、16QAM、32QAM、64QAM、128QAM)的正确分类率达到 100%。此外,OSNR 的最小均方误差 (MSE) 为 0.431 dB。然后,消融实验计算了每个度量函数的相应相似度(SIM),结果显示,MML、SIMLocal+Cosine、SIMCosine+Point、SIMLocal+Point、单任务度量学习(SML)和自适应多任务学习(AMTL)的 MSE 分别为 0.431 dB、0.572 dB、0.569 dB、0.567 dB、0.637 dB 和 1.319 dB。所提出的模型在 MFI 估算方面达到了最高精度,在 OSNR 估算方面达到了最低 MSE。最后,在改变光纤传输距离的同时比较各种度量函数时发现,MML 在 200 千米到 800 千米之间保持在可接受的范围内。这表明,我们的算法只需要少量的训练样本就能建立一个相当好的模型,为解决光性能监测中出现的问题提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
期刊最新文献
Fiber laser system for Rb atomic fountain clock A crosstalk-consideration spectrum assignment algorithm in SDM-EONs based on exact multi-flow strategy Learning to estimate phases from single local patterns for coherent beam combination Temperature variation mechanism and error suppression of key parameters of phase modulator in fiber optic current sensing system Bolt axial force monitoring based on fiber grating technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1